【題目】如圖,點(diǎn)E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一條弦.則sin∠OBE= .
【答案】
【解析】解:連接EC,由∠EOC=90°得到BC為圓A的直徑,
∴EC過(guò)點(diǎn)A,
又OE=3,OC=4,根據(jù)勾股定理得:EC=5,
∵∠OBE和∠OCE為 所對(duì)的圓周角,
∴∠OBE=∠OCE,
則sin∠OBE=sin∠OCE= = .
故答案為: .
連接EC,由90°的圓周角所對(duì)的弦為直徑,根據(jù)∠EOC=90°得到EC為圓A的直徑,所以點(diǎn)A在EC上且為EC中點(diǎn),在直角三角形EOC中,由OE和OC的長(zhǎng),利用勾股定理求出EC的長(zhǎng),根據(jù)同弧所對(duì)的圓周角都相等得到∠EBO與∠ECO相等,而∠ECO在直角三角形EOC中,根據(jù)余弦函數(shù)定義即可求出sin∠ECO的值,進(jìn)而得到sin∠EBO.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn),過(guò)點(diǎn)P畫(huà)OB的垂線,交OA于點(diǎn)C;
(1) 過(guò)點(diǎn)C畫(huà)OB的平行線CD;
(2) 過(guò)點(diǎn)P畫(huà)OA的垂線,垂足為H;
(3) 線段PH的長(zhǎng)度是點(diǎn)P到 的距離,線段 的長(zhǎng)度是點(diǎn)C到直線OB的距離.線段PC、PH、OC這三條線段大小關(guān)系是 (用“<”號(hào)連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,它表示甲乙兩人從同一個(gè)地點(diǎn)出發(fā)后的情況.到十點(diǎn)時(shí),甲大約走了13千米.根據(jù)圖象回答:
(1)甲是幾點(diǎn)鐘出發(fā)?
(2)乙是幾點(diǎn)鐘出發(fā),到十點(diǎn)時(shí),他大約走了多少千米?
(3)到十點(diǎn)為止,哪個(gè)人的速度快?
(4)兩人最終在幾點(diǎn)鐘相遇?
(5)你能將圖象中得到信息,編個(gè)故事嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說(shuō)明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店今年1月份購(gòu)進(jìn)一批筆記本,共2290本,每本進(jìn)價(jià)為10元,該文具店決定從2月份開(kāi)始進(jìn)行銷售,若每本售價(jià)為11元,則可全部售出;且每本售價(jià)每增長(zhǎng)0.5元,銷量就減少15本.
(1)若該種筆記本在2月份的銷售量不低于2200本,則2月份售價(jià)應(yīng)不高于多少元?
(2)由于生產(chǎn)商提高造紙工藝,該筆記本的進(jìn)價(jià)提高了10%,文具店為了增加筆記本的銷量,進(jìn)行了銷售調(diào)整,售價(jià)比中2月份在(1)的條件下的最高售價(jià)減少了 m%,結(jié)果3月份的銷量比2月份在(1)的條件下的最低銷量增加了m%,3月份的銷售利潤(rùn)達(dá)到6600元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣ x2﹣ x+ 與x軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,已知點(diǎn)D(0,﹣ ).
(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△PBD面積最大時(shí),過(guò)P作PQ⊥x軸于點(diǎn)Q,M為拋物線對(duì)稱軸上的一動(dòng)點(diǎn),過(guò)M作y軸的垂線,垂足為點(diǎn)N,連接PM,NQ,求PM+MN+NQ的最小值;
(3)在(2)問(wèn)的條件下,將得到的△PBQ沿PB翻折得到△PBQ′,將△BPQ′沿直線BD平移,記平移中的△PBQ′為△P′B′Q″,在平移過(guò)程中,設(shè)直線P′B′與x軸交于點(diǎn)E.則是否存在這樣的點(diǎn)E,使得△B′EQ″為等腰三角形?若存在,求此時(shí)OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的“數(shù)學(xué)奧林匹克”大賽預(yù)賽,各參賽選手的成績(jī)?nèi)缦拢?/span>
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通過(guò)整理,得到數(shù)據(jù)分析表如下:
班級(jí) | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
九(1)班 | 100 | 94 | b | 93 | 12 |
九(2)班 | 99 | a | 95.5 | 93 | 8.4 |
(1)直接寫(xiě)出表中a、b的值:a= , b=;
(2)若從兩班的參賽選手中選四名同學(xué)參加決賽,其中兩個(gè)班的第一名直接進(jìn)入決賽,另外兩個(gè)名額在四個(gè)“98分”的學(xué)生中任選二個(gè),求另外兩個(gè)決賽名額落在不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AC為對(duì)角線,延長(zhǎng)CD至點(diǎn)E使CE=CA,連接AE。F為AB上一點(diǎn),且BF=DE,連接FC.
(1)若DE=1,CF=2,求CD的長(zhǎng)。
(2)如圖2,點(diǎn)G為線段AE的中點(diǎn),連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一塊直角三角形的綠地,量得直角邊BC為6cm,AC為8cm,現(xiàn)在要將原綠地?cái)U(kuò)充后成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后的等腰三角形綠地的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com