【題目】如圖, 直線與軸交于點,與雙曲線 在第三象限交于兩點,且 ;下列等邊三角形,,,……的邊,,,……在軸上,頂點……在該雙曲線第一象限的分支上,則= ____,前25個等邊三角形的周長之和為 _______.
【答案】; 60
【解析】
設(shè),設(shè)直線與軸的交點為H,先求解的坐標,得到∠HAO=30°,用含的代數(shù)式表示,聯(lián)立函數(shù)解析式利用根與系數(shù)的關(guān)系得到關(guān)于的方程,從而可得第一空的答案;過分別向軸作垂線,垂足分別為先根據(jù)等邊三角形的性質(zhì)與反比例函數(shù)的性質(zhì)求解的邊長,依次同法可得后面等邊三角形的邊長,發(fā)現(xiàn)規(guī)律,再前25個等邊三角形的周長之和即可.
解:設(shè),設(shè)直線與軸的交點為H,
令 則
令 則
∴H(),又A(0,b),
∴tan∠HAO=,∴∠HAO=30°,
過作軸于 作軸于,
∴AB=2BM,AC=2CN,∵BM=,,
∴AB=,AC=,
∴,
聯(lián)立
得到。
∴,由已知可得,
∴,
∴反比例函數(shù)的解析式為,
過分別向軸作垂線,垂足分別為
設(shè)
由等邊三角形的性質(zhì)得:
得:
(舍去)
經(jīng)檢驗:符合題意,
可得的邊長為4,
同理設(shè) ,
解得: (舍去)
經(jīng)檢驗:符合題意,
的邊長為,
同理可得:的邊長為,
的邊長為.
∴前25個等邊三角形的周長之和為
=
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2經(jīng)過點A(1,0),B(4,0),交y軸于點C;
(1)求拋物線的解析式(用一般式表示);
(2)點D為y軸右側(cè)拋物線上一點,是否存在點D使S△ABC=S△ABD?若存在,請求出點D坐標;若不存在,請說明理由;
(3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,直線交二次函數(shù)的圖像于點,,點在該二次函數(shù)的圖像上,設(shè)過點(其中)且平行于軸的直線交直線于點,交直線于點,以線段、為鄰邊作矩形.
(1)若點的橫坐標為8.
①用含的代數(shù)式表示的坐標;
②點能否落在該二次函數(shù)的圖像上?若能,求出的值;若不能,請說明理由;
(2)當時,若點恰好落在該二次函數(shù)的圖像上,請直接寫出此時滿足條件的所有直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,點為矩形對角線上一點,過點作,分別交、于點、.若,,的面積為,的面積為,則________;
(2)如圖2,點為內(nèi)一點(點不在上),點、、、分別為各邊的中點.設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(3)如圖3,點為內(nèi)一點(點不在上)過點作,,與各邊分別相交于點、、、.設(shè)四邊形的面積為,四邊形的面積為(其中),求的面積(用含、的代數(shù)式表示);
(4)如圖4,點、、、把四等分.請你在圓內(nèi)選一點(點不在、上),設(shè)、、圍成的封閉圖形的面積為,、、圍成的封閉圖形的面積為,的面積為,的面積為.根據(jù)你選的點的位置,直接寫出一個含有、、、的等式(寫出一種情況即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,雙曲線與直線相交于點和B,過B點作軸于點C,連接AC,已知.
(1)求的值;
(2)延長AC交雙曲線于另一點D,求D的的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸相交于、,交軸于點,點拋物線的頂點,對稱軸與軸交于點.
⑴.求拋物線的解析式;
⑵.如圖1,連接,點是線段上方拋物線上的一動點,于點;過點作軸于點,交于點.點是軸上一動點,當 取最大值時.
①.求的最小值;
②.如圖2,點是軸上一動點,請直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L1:(常數(shù)t>0)與軸的負半軸交于點G,頂點為Q,過Q作QM⊥軸交軸于點M,交雙曲線L2:于點P,且OG·MP=4.
(1)求值;
(2)當t=2時,求PQ的長;
(3)當P是QM的中點時,求t的值;
(4)拋物線L1與拋物線L2所圍成的區(qū)域(不含標界)內(nèi)整點(點的橫、縱坐標都是整數(shù))的個數(shù)有且只有1個,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字、1、2,它們除了數(shù)字不同外,其它都完全相同.
(1)隨機地從布袋中摸出一個小球,求摸出的球為標有數(shù)字1的小球的概率.
(2)小紅先從布袋中隨機摸出一個小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機摸出一個小球,記下數(shù)字作為的值,請用樹狀圖或表格列出、的所有可能的值,并求出直線不經(jīng)過第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在整數(shù)的除法運算中,只有能整除與不能整除兩種情況,當不能整除時,就會產(chǎn)生余數(shù),現(xiàn)在我們利用整數(shù)的除法運算來研究一種數(shù)——“差一數(shù)”.
定義:對于一個自然數(shù),如果這個數(shù)除以5余數(shù)為4,且除以3余數(shù)為2,則稱這個數(shù)為“差一數(shù)”.
例如:,,所以14是“差一數(shù)”;
,但,所以19不是“差一數(shù)”.
(1)判斷49和74是否為“差一數(shù)”?請說明理由;
(2)求大于300且小于400的所有“差一數(shù)”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com