【題目】如圖,已知點(diǎn)O是直線AB上一點(diǎn),射線OD,OE分別是∠BOC,∠AOC的平分線.

1)圖中共有幾對(duì)互余角?請(qǐng)寫出來(lái)

2)若∠AOE31°,求∠AOC和∠DOC的度數(shù).

【答案】1)共有4對(duì)互余角,分別是∠AOE和∠DOB;∠AOE和∠DOC,∠EOC和∠DOC,∠EOC和∠DOB;(262°,59°

【解析】

1)根據(jù)余角的性質(zhì)可得互余的角為:∠AOE和∠DOB;∠AOE和∠DOC;∠EOC和∠DOC;∠EOC和∠DOB
2)根據(jù)OEOD為角平分線,易求得∠AOC和∠DOC的度數(shù).

1)∵射線OD、OE分別是∠BOC、∠AOC的平分線,
∴∠EOD+COD=90°,
則共有4對(duì)互余角:分別是∠AOE和∠DOB;
AOE和∠DOC
EOC和∠DOC;
EOC和∠DOB
2)射線OD、OE分別是∠BOC、∠AOC的平分線,∠AOE=31°,
∴∠AOC=2AOE=62°
DOC=90°-COE=90°-31°=59°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下面的表格中,從左到右依次在每個(gè)小方格中填入一個(gè)數(shù),使得其中任意三個(gè)相鄰方格中所填數(shù)之和都相等,例如:

第1格

第2格

第3格

第4格

第5格

第6格

第7格

第8格

第9格

第n格

8

-2

_____

_____

_____

-3

_____

1)求出第4格中的數(shù);

2)第6格中的數(shù)是    (直接填具體數(shù));

3)前2020個(gè)格子中所填各數(shù)之和為    (直接填空).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校教學(xué)樓AB的后面有一建筑物CD,在距離CD正后方28米的觀測(cè)點(diǎn)P處,以22°的仰角測(cè)得建筑物的頂端C恰好擋住教學(xué)樓的頂端A,而在建筑物CD上距離地面2米高的E處,測(cè)得教學(xué)樓的頂端A的仰角為45°,求教學(xué)樓AB的高度(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ABC=90°,以AB為直徑作⊙OAC邊于點(diǎn)D,E是邊BC的中點(diǎn),連接DE,OD.

(Ⅰ)如圖①,求∠ODE的大。

(Ⅱ)如圖②,連接OCDE于點(diǎn)F,若OF=CF,求∠A的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)Ax軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把BAD沿直線BD折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.

(Ⅰ)若點(diǎn)A′落在矩形的對(duì)角線OB上時(shí),OA′的長(zhǎng)=   ;

(Ⅱ)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);

(Ⅲ)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為解決部分市民冬季集中取暖問(wèn)題,需鋪設(shè)一條長(zhǎng)4000米的管道,為盡量減少施工對(duì)交通造成的影響,施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( 。

A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天完成

B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天完成

C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成

D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】釣魚島自古就是中國(guó)的領(lǐng)土,我國(guó)有 關(guān)部門已對(duì)釣魚島及其附屬島嶼開(kāi)展常態(tài)化監(jiān)視監(jiān)測(cè). M、N 為釣魚島上東西海岸線上的兩點(diǎn),MN 之間的距 離約為3.6km. 某日,我國(guó)一艘海監(jiān)船從 A 點(diǎn)沿正北方 向巡航,在 A 點(diǎn)測(cè)得島嶼的西端點(diǎn) N 在點(diǎn) A 的北偏東350方向;海監(jiān)船繼續(xù)航行 4km 后到達(dá) B 點(diǎn) ,測(cè)得島嶼的東端點(diǎn) M 在點(diǎn) B 的北偏東 600方向,求點(diǎn) M 距離海監(jiān)船航線的最短距離 (結(jié)果精確到 0.1km).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABAD,DAAB,點(diǎn)ECD的延長(zhǎng)線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE

2)求證:CA平分∠BCD;

3)如圖(2),設(shè)AF是△ABCBC邊上的高,求證:EC2AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20143月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測(cè)儀進(jìn)行海上搜救,分別在A、B兩個(gè)探測(cè)點(diǎn)探測(cè)到C處是信號(hào)發(fā)射點(diǎn),已知AB兩點(diǎn)相距400m,探測(cè)線與海平面的夾角分別是,若CD的長(zhǎng)是點(diǎn)C到海平面的最短距離.

問(wèn)BDAB有什么數(shù)量關(guān)系,試說(shuō)明理由;

求信號(hào)發(fā)射點(diǎn)的深度結(jié)果精確到1m,參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊(cè)答案