【題目】如圖,將矩形紙片 ABCD 折疊,AE、EF 為折痕,點(diǎn) C 落在 AD 邊上的 G 處, 并且點(diǎn) B 落在 EG 邊的 H AB=,BAE=30°,則 BC 邊的長為( )

A. 3 B. 4 C. 5 D. 6

【答案】A

【解析】

利用三角函數(shù)求出直角三角形各邊長度,再證明△AEC1△CC1E是等邊三角形,即可求出BC長度。

:連接CC1,如下圖所示

∵在Rt△ABE,∠BAE=30,AB=

∴BE=AB×tan30°=1,AE=2,

∴∠AEB1=∠AEB=60°

AD∥BC,∠C1AE=∠AEB=60°

∴△AEC1為等邊三角形,

∴△CC1E也為等邊三角形,

∴EC=EC1=AE=2

∴BC= BE+EC=3

所以A選項是正確的

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題.

為促進(jìn)學(xué)生健康成長,切實提高學(xué)生健康水平,某校為各班用400元購進(jìn)若干體育用品,接著又用450元購進(jìn)第二批體育用品,已知第二批所購體育用品數(shù)是第一批所購體育用品數(shù)的1.5倍,且每件體育用品的進(jìn)價比第一批的進(jìn)價少5元,求第一批體育用品每件的進(jìn)價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要擰開一個邊長為a=6mm的正六邊形螺帽,扳手張開的開口b至少為(
A.6 mm
B.12mm
C.6 mm
D.4 mm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級學(xué)生體育測試情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖,?/span>A,B,CD四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)

1)請把條形統(tǒng)計圖補(bǔ)充完整;

2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是多少?

3)若該校九年級有600名學(xué)生,請用樣本估計體育測試中A級學(xué)生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A. ×(﹣3)=1
B.5﹣8=﹣3
C.23=6
D.(﹣2013)0=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B,C為⊙O上相鄰的三個n等分點(diǎn), ,點(diǎn)E在 上,EF為⊙O的直徑,將⊙O沿EF折疊,使點(diǎn)A與A′重合,點(diǎn)B與B′重合,連接EB′,EC,EA′.設(shè)EB′=b,EC=c,EA′=p.現(xiàn)探究b,c,p三者的數(shù)量關(guān)系:發(fā)現(xiàn)當(dāng)n=3時,p=b+c.請繼續(xù)探究b,c,p三者的數(shù)量關(guān)系:當(dāng)n=4時,p=;當(dāng)n=12時,p= . (參考數(shù)據(jù):sin15°=cos75°= ,cos15°=sin75°=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算:
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正整數(shù)中,

(1﹣)=(1﹣)(1+

(1﹣)=(1﹣)(1+

(1﹣)=(1﹣)(1+

觀察上面的算式,可以歸納得出: =   

利用上述規(guī)律,計算下列各式:(1﹣)×(1﹣)×(1﹣)=   

(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=   (請將結(jié)題步驟寫在下方空白處)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A、Dy軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)EAC上一點(diǎn),且∠DEA=DBO,求BC+EC的長;

3)如圖3,過DDFACF點(diǎn),點(diǎn)HFC上一動點(diǎn),點(diǎn)GOC上一動點(diǎn),當(dāng)HFC上移動、點(diǎn)GOC上移動時,始終滿足∠GDH=GDO+FDH,試判斷FH、GHOG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.

(圖3

查看答案和解析>>

同步練習(xí)冊答案