【題目】如圖,點(diǎn)都在反比例函數(shù)的圖象上.
(1)求的值;
(2)如果為軸上一點(diǎn),為軸上一點(diǎn),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,試求直線的函數(shù)表達(dá)式;
(3)將線段沿直線進(jìn)行對折得到線段,且點(diǎn)始終在直線上,當(dāng)線段與軸有交點(diǎn)時(shí),則的取值范圍為_______(直接寫出答案)
【答案】(1)m=3,k=12;(2)yx+2或yx﹣2;(3).
【解析】
(1)由題可得m(m+1)=(m+3)(m﹣1)=k,解這個(gè)方程就可求出m、k的值.
(2)由于點(diǎn)A、點(diǎn)B是定點(diǎn),可對線段AB進(jìn)行分類討論:AB是平行四邊形的邊、AB是平行四邊形的對角線,再利用平行四邊形的性質(zhì)、中點(diǎn)坐標(biāo)公式及直線的相關(guān)知識(shí)就可解決問題.
(3)由于點(diǎn)A關(guān)于直線y=kx+b的對稱點(diǎn)點(diǎn)A1始終在直線OA上,因此直線y=kx+b必與直線OA垂直,只需考慮兩個(gè)臨界位置(A1在x軸上、B1在x軸上)對應(yīng)的b的值,就可以求出b的取值范圍.
(1)∵點(diǎn)A(m,m+1),B(m+3,m﹣1)都在反比例函數(shù)y的圖象上,∴m(m+1)=(m+3)(m﹣1)=k.
解得:m=3,k=12,∴m、k的值分別為3、12.
(2)設(shè)點(diǎn)M的坐標(biāo)為(m,0),點(diǎn)N的坐標(biāo)為(O,n).
①若AB為平行四邊形的一邊.
Ⅰ.點(diǎn)M在x軸的正半軸,點(diǎn)N在y軸的正半軸,連接BN、AM交于點(diǎn)E,連接AN、BM,如圖1.
∵四邊形ABMN是平行四邊形,∴AE=ME,NE=BE.
∵A(3,4)、B(6,2)、M(m,0)、N(0,n),∴由中點(diǎn)坐標(biāo)公式可得:
xE,yE,∴m=3,n=2,∴M(3,0)、N(0,2).
設(shè)直線MN的解析式為y=kx+b.
則有
解得:,∴直線MN的解析式為yx+2.
Ⅱ.點(diǎn)M在x軸的負(fù)半軸,點(diǎn)N在y軸的負(fù)半軸,連接BM、AN交于點(diǎn)E,連接AM、BN,如圖2,同理可得:直線MN的解析式為yx﹣2.
②若AB為平行四邊形的一條對角線,連接AN、BM,設(shè)AB與MN交于點(diǎn)F,如圖3.
同理可得:直線MN的解析式為yx+6,此時(shí)點(diǎn)A、B都在直線MN上,故舍去.
綜上所述:直線MN的解析式為yx+2或yx﹣2.
(3)①當(dāng)點(diǎn)B1落到x軸上時(shí),如圖4.
設(shè)直線OA的解析式為y=ax.
∵點(diǎn)A的坐標(biāo)為(3,4),∴3a=4,即a,∴直線OA的解析式為yx.
∵點(diǎn)A1始終在直線OA上,∴直線y=kx+b與直線OA垂直,∴k=﹣1,∴k.
由于BB1∥OA,因此直線BB1可設(shè)為yx+c.
∵點(diǎn)B的坐標(biāo)為(6,2),∴6+c=2,即c=﹣6,∴直線BB1解析式為yx﹣6.
當(dāng)y=0時(shí),x﹣6=0.則有x,∴點(diǎn)B1的坐標(biāo)為(,0).
∵點(diǎn)C是BB1的中點(diǎn),∴點(diǎn)C的坐標(biāo)為()即(,1).
∵點(diǎn)C在直線yx+b上,∴b=1.
解得:b.
②當(dāng)點(diǎn)A1落到x軸上時(shí),如圖5.
此時(shí),點(diǎn)A1與點(diǎn)O重合.
∵點(diǎn)D是AA1的中點(diǎn),A(3,4),A1(0,0),∴D(,2).
∵點(diǎn)D在直線yx+b上,∴b=2.
解得:b.
綜上所述:當(dāng)線段A1B1與x軸有交點(diǎn)時(shí),則b的取值范圍為.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,繪出了某一結(jié)果出現(xiàn)的頻率的折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是
A. 擲一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率
B. 拋一枚硬幣,出現(xiàn)正面的概率
C. 任意寫一個(gè)整數(shù),它能被2整除的概率
D. 從一個(gè)裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到紅球的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某儲(chǔ)運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用4小時(shí),調(diào)進(jìn)物資2小時(shí)后開始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度均保持不變).儲(chǔ)運(yùn)部庫存物資(噸)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時(shí)間是( )
A. 4小時(shí)B. 4.3小時(shí)C. 4.4小時(shí)D. 5小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),交軸于點(diǎn),直線過點(diǎn)與軸交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為,作軸于點(diǎn).設(shè)點(diǎn)是直線上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)、重合),過點(diǎn)作軸的平行線,交直線于點(diǎn),作于點(diǎn).
(1)填空:__________,__________,__________;
(2)探究:是否存在這樣的點(diǎn),使四邊形是平行四邊形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)設(shè)的周長為,點(diǎn)的橫坐標(biāo)為,求與的函數(shù)關(guān)系式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個(gè)矩形對角線交點(diǎn)重合,且使重疊部分成為一個(gè)菱形.當(dāng)兩張紙條垂直時(shí),菱形周長的最小值是4,把一個(gè)矩形繞兩個(gè)矩形重合的對角線交點(diǎn)旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是( )
A. 8B. 10C. 10.4D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點(diǎn),連接AG并延長交BC邊的延長線于E點(diǎn),對角線BD交AG于F點(diǎn).已知FG=2,則線段AE的長度為( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,點(diǎn)E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為( 。
A. 10B. 4C. 20D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,C、D分別為BM、AM上的點(diǎn),四邊形ABCD內(nèi)接于,連接AC,;
如圖,求證:弧弧BD;
如圖,若AB為直徑,,求值;
如圖,在的條件下,E為弧CD上一點(diǎn)不與C、D重合,F為AB上一點(diǎn),連接EF交AC于點(diǎn)N,連接DN、DE,若,,,求AN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com