【題目】如圖在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,
(1)PN=2PQ,求矩形PQMN的周長(zhǎng)
(2)當(dāng)PN為多少時(shí)矩形PQMN的面積最大,最大值為多少?
【答案】(1)矩形PQMN的周長(zhǎng)=14.4cm;(2)當(dāng)AE=3時(shí),矩形PQMN的面積最大,最大面積是12,此時(shí)PN=4.
【解析】
(1)由題意可得出PQ:AD=BP:AB,PN:BC=AP:AB,BC=8,AD=6,據(jù)此可得出PQ,PN的值,故可得出矩形PQMN的周長(zhǎng);
(2)設(shè)長(zhǎng)方形零件PQMN的邊AE=x,矩形PQMN的面積為S,利用△APN∽△ABC得相似比,用相似比可得出用含x的式子表示S,從而得出二次函數(shù)解析式,根據(jù)解析式及自變量取值范圍求S的最大值.
(1)由題意得;PQ:AD=BP:AB,PN:BC=AP:AB
∴,
又∵PN=2PQ,BC=8cm,AD=6cm,
∴,
∴PQ=2.4
則PN=4.8,
∴矩形PQMN的周長(zhǎng)=14.4cm;
(2)∵四邊形PQMN是矩形,
∴PN∥BC,∠PQM=90°,∠QPN=90°,
∴△PAN∽△ABC,
∵AD是高,
∴∠ADB=90°,
∴四邊形PQDE是矩形,∠AEN=90°,
∴,PQ=DE,
設(shè)AE=x,矩形PQMN的面積為S,
則,DE=6﹣x,
∴PN=x,PQ=6﹣x,
∴S=﹣x2+8x.
∴當(dāng)x==3時(shí),S的最大值為12.,
∴當(dāng)AE=3時(shí),矩形PQMN的面積最大,最大面積是12,此時(shí)PN=×3=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分別是AC、BC上的一點(diǎn),且DE=6 ,若以DE為直徑的圓與斜邊AB相交于M、N,則MN的最大值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,5),B(n,2)是拋物線C1:上的兩點(diǎn),將拋物線C1向左平移,得到拋物線C2,點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A',B'.若曲線段AB掃過的陰影部分面積為9,則拋物線C2的解析式是______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P, Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).以AP為一邊向上作正方形APDE,過點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為,正方形APDE和梯形BCFQ重合部分的面積為cm.
(1)當(dāng)=_____s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)為多少時(shí),點(diǎn)D在QF上;
(3)是否存在某一時(shí)刻,使得正方形APDE的面積被直線QF平分?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連接EF、EO,若DE=2,∠DPA=45°.則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC為邊向外作正方形,其面積分別為S1、S2、S3,若S1=2,S3=4,則S2的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=5,EC=1,則DE的長(zhǎng)為( )
A. 2B. 4C. 2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D在⊙O上,且BC=CD,過點(diǎn)C作CE⊥AD,交AD延長(zhǎng)線于E,交AB延長(zhǎng)線于F點(diǎn).若AB=4ED,則cos∠ABC的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜坡的頂部有一鐵塔AB,B是CD的中點(diǎn),CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知CD=20m,DE=30m,小明和小華的身高都是1.5m,同一時(shí)刻,小明站在E處,影子落在坡面上,影長(zhǎng)為2m,小華站在平地上,影子也落在平地上,影長(zhǎng)為1m,則塔高AB是_____米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com