【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點,CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知CD20m,DE30m,小明和小華的身高都是1.5m,同一時刻,小明站在E處,影子落在坡面上,影長為2m,小華站在平地上,影子也落在平地上,影長為1m,則塔高AB_____米.

【答案】37.5

【解析】

仔細觀察圖形,理解鐵塔AB的影子是由坡面DE與平地BD兩部分組成.
塔影落在坡面部分的塔高:塔影DE長=小明的身高:小明的影長;
塔影落在平地部分的塔高:塔影BD長=小華的身高:小華的影長.
設(shè)塔影留在坡面DE部分的塔高為h1、塔影留在平地BD部分的塔高為h2,則鐵塔的高為h1+h2

解:過D點作DFAE,交ABF點,如圖所示:

設(shè)塔影留在坡面DE部分的塔高AF=h1、塔影留在平地BD部分的塔高BF=h2
則鐵塔的高為h1+h2
h130m=1.5m2m,
h1=22.5m
h210m=1.5m1 m
h2=15m
AB=22.5+15=37.5m).
∴鐵塔的高度為37.5m
故答案為:37.5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖在ABC中,AD是高,矩形PQMN的頂點PN分別在AB、AC上,QM在邊BC上.若BC8cmAD6cm

1PN2PQ,求矩形PQMN的周長

2)當PN為多少時矩形PQMN的面積最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西瓜經(jīng)營戶以2元/千克的價格購進一批小型西瓜,以3元/千克的價格出售,每天可售出200千克,為了促銷,該經(jīng)營戶決定降價銷售,經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價01元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.

(1)設(shè)銷售單價為每千克a,每天平均獲利為y,請解答下列問題:

①每天平均銷售量可以表示為_____;

②每天平均銷售額可以表示為_____;

③每天平均獲利可以表示為y=______;

(2) 該經(jīng)營戶要想每天盈利200元,應(yīng)將每千克小型西瓜的售價降多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是半⊙O的直徑,點P是半圓弧的中點,點A是弧BP的中點,ADBCD,連結(jié)AB、PB、AC,BP分別與AD、AC相交于點E、F

1)求證:AE=BE

2)判斷BEEF是否相等嗎,并說明理由;

3)小李通過操作發(fā)現(xiàn)CF=2AB,請問小李的發(fā)現(xiàn)是否正確?若正確,請說明理由;若不正確,請寫出CFAB正確的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了綠化小區(qū),某物業(yè)公司要在形如五邊形ABCDE的草坪上建一個矩形花壇PKDH

已知:DE100米,EA60米,BC70米,CD80米.以BC所在直線為x軸,AE所在直線為y軸,建立平面直角坐標系,坐標原點為O

1)求直線AB的解析式.

2)若設(shè)點P的橫坐標為x,矩形PKDH的面積為S,求S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學生帶手機上學的現(xiàn)象越來越受到社會的關(guān)注,為此,某記者隨機調(diào)查了某城區(qū)若干名學生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:基本贊成;C:贊成;D:反對),并將調(diào)查結(jié)果繪制成頻數(shù)折線圖1和統(tǒng)計圖2(不完整)。請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣檢查中,共調(diào)查了  名學生家長;

2)將圖1補充完整;

3)根據(jù)抽樣檢查的結(jié)果,請你估計該市城區(qū)6000名中學生家長中有多少名家長持反對態(tài)度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB相交于點H、E,AH=2CH.

(1)求sinB的值;

(2)如果CD=,求BE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以點A為圓心、AB的長為半徑畫弧交AD于點F,再分別以點BF為圓心、大于BF的長為半徑畫弧,兩弧交于點M,作射線AMBC于點E,連接EF.下列結(jié)論中不一定成立的是(  )

A. BEEFB. EFCDC. AE平分∠BEFD. ABAE

查看答案和解析>>

同步練習冊答案