11.解不等式或不等式組,并把解集在數(shù)軸上表示出來(lái):
(1)$x-1≤\frac{x+1}{2}$

(2)$\left\{{\begin{array}{l}{2x-5>1}\\{2-x<0}\end{array}}\right.$.

分析 (1)根據(jù)不等式的基本性質(zhì)分別去分母、移項(xiàng)、合并同類(lèi)項(xiàng)可得;
(2)分別求出每個(gè)不等式的解集,根據(jù)“同大取大”即可得不等式組的解集.

解答 解:(1)去分母,得:2x-2≤x+1,
移項(xiàng),得:2x-x≤1+2,
合并同類(lèi)項(xiàng),得:x≤3,
將不等式解集表示在數(shù)軸上如下:


(2)解不等式2x-5>1,得:x>3,
解不等式2-x<0,得:x>2,
∴不等式組的解集x>3,
將不等式解集表示在數(shù)軸上如下:

點(diǎn)評(píng) 本題主要考查解一元一次不等式和不等式組的能力,準(zhǔn)確求出每個(gè)不等式的解集是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.正四面體的四個(gè)面上分別寫(xiě)著1、2、3、4.將四個(gè)這樣均勻的正四面體同時(shí)擲于桌面上,與桌面接觸的四個(gè)面上的四個(gè)數(shù)的乘積能被4整除的概率為$\frac{13}{16}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某校九年二班在體育加試中全班所有學(xué)生的得分情況如表所示:
 分?jǐn)?shù)段(分) 15-19 20-24 25-29 30
 人數(shù) 1 5 9 25
從九年二班的學(xué)生中隨機(jī)抽取一人,恰好是獲得30分的學(xué)生的概率為$\frac{5}{8}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,茶杯的左視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,若?ABCD的面積為20,BC=5,則邊AD與BC間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,已知過(guò)點(diǎn)F(0,1)的動(dòng)直線l交拋物線y=$\frac{1}{2}$x2+$\frac{1}{2}$于P、Q兩點(diǎn),記點(diǎn)P到x軸的距離為d1,點(diǎn)P到點(diǎn)F的距離為d2
(1)猜想d1與d2的大小關(guān)系,并證明;
(2)分別過(guò)P、Q作x軸的垂線PM、QN,垂足為M、N,連接FM、FN,求證:∠MFN=90°;
(3)若線段PQ的長(zhǎng)為4,求直線l所對(duì)應(yīng)一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,在△ABC中,DE是AC的垂直平分線,△ABC的周長(zhǎng)為19cm,△ABD的周長(zhǎng)為13cm,則AE的長(zhǎng)為( 。
A.3cmB.6cmC.12cmD.16cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線l1:y=-3x+b與直線l2:y=-kx+1在同一坐標(biāo)系中的圖象交于點(diǎn)(1,-2),那么方程組$\left\{\begin{array}{l}{3x+y=b}\\{kx+y=1}\end{array}\right.$的解是( 。
A.$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$C.$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$D.$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.不等式組$\left\{\begin{array}{l}{x+2≥0}\\{3-x>1}\end{array}\right.$的解集在數(shù)軸上表示為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案