【題目】如圖,在△ABC中,AB=AC,BC⊥x軸,垂足為D,邊AB所在直線分別交x軸、y軸于點E、F,且AF=EF,反比例函數y=的圖象經過A、C兩點,已知點A(2,n).
(1)求AB所在直線對應的函數表達式;(2)求點C的坐標.
【答案】(1)y=x+3;(2)C(4,3).
【解析】
(1)先根據點A(2,n)在反比例函數y=的圖象上,得出點A的坐標,作AH⊥OD于H.由△EFO∽△EAH,可得 ,由此求出E、F坐標,再利用待定系數法即可解決問題;
(2)作AG⊥BD于G.則四邊形AGDH是矩形,根據等腰三角形的性質證出BG=CG,構建方程即可解決問題;
解:(1)把A(2,n)代入y=,得到n=6,
作AH⊥OD于H.
∴OH=2,AH=6,
∵△EFO∽△EAH,
∴,
∵EF=AF,
∴,
∴EO=2,FO=3,
∴E(﹣2,0),F(0,3),
設直線AB的解析式為y=kx+b,則有,
解得,
∴直線AB的解析式為y=x+3.
(2)作AG⊥BD于G.則四邊形AGDH是矩形,
∴DG=AH=6,設C(a,),則B(a,a+3),
∴CD=,BG=a+3﹣6=a﹣3,GC=6﹣,
∵AB=AC,AG⊥BC,
∴BG=CG,
∴a﹣3
整理得:a2﹣6a+8=8,∴a=4或2,
∵A(2,6)
∴C(4,3)
科目:初中數學 來源: 題型:
【題目】如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.5米,則梯子頂端A下落了( 。┟祝
A. 0.5 B. 1 C. 1.5 D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2.
(1)求y與x之間的函數關系式;
(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如下統(tǒng)計圖:
根據統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次抽樣調查中的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)該校共有2000名學生,請根據統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校教師開展了“練一手好字”的活動,校委會對部分教師練習字帖的情況進行了問卷調查,問卷設置了“柳體”、“顏體”、”歐體“和”其他“類型,每位教師僅能選一項,根據調查的結果繪制了如下統(tǒng)計表:
類別 | 柳體 | 顏體 | 歐體 | 其他 | 合計 |
人數 | 4 | 10 | 6 | ||
占的百分比 | 0.5 | 0.25 | 1 |
根據圖表提供的信息解答下列問題:
(1)這次問卷調查了多少名教師?
(2)請你補全表格.
(3)在調查問卷中,甲、乙、丙、丁四位教師選擇了“柳體”,現從以上四位教師中任意選出2名教師參加學校的柳體興趣小組,請你用畫樹狀圖或列表的方法,求選出的2人恰好是乙和丙兩位教師的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了深化課程改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“國際象棋”、“音樂舞蹈”和“書法”等多個社團,要求每位學生都自主選擇其中一個社團,為此,隨機調查了本校部分學生選擇社團的意向.并將調查結果繪制成如下統(tǒng)計圖表(不完整):
選擇意向 | 文學鑒賞 | 國際象棋 | 音樂舞蹈 | 書法 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據統(tǒng)計圖表的信息,解答下列問題:
(1)求本次抽樣調查的學生總人數及a、b的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1300名學生,試估計全校選擇“音樂舞蹈”社團的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點,且CE=CF;
(1)求證:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com