【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).

(1)在圖中作出ABC關(guān)于y軸對稱的△A1B1C1;

(2)寫出點C1的坐標(biāo)(直接寫答案):C1   ;

(3)△A1B1C1的面積為   ;

(4)在y軸上畫出點P,使PB+PC最小.

【答案】(1)詳見解析;(2)C1(1,﹣1);(3);(4)詳見解析.

【解析】

1)分別作出點A、B、C關(guān)于y軸的對稱點A1、B1、C1即可.
(2)根據(jù)點C1的位置即可解決問題.
(3)利用分割法計算即可.
(4)連接BC1y軸的交點即為所求的點P.

解:(1)如圖,A1B1C1即為所求;

(2)由圖象可知:C1(1,﹣1);

故答案為(1,﹣1).

(3)S=3×5﹣×1×5﹣×2×3﹣×2×3=;

故答案為

(4)如圖,連接BC1y軸的交點為P,點P即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x= ,且經(jīng)過點(2,0),下列說法: ①abc<0;
②a+b=0;
③4a+2b+c<0;
④若(﹣2,y1),(﹣3,y2)是拋物線上的兩點,則y1<y2 ,
其中說法正確的是(

A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+2x﹣3經(jīng)過點(1,3)
(1)求a的值;
(2)當(dāng)x=3時,求y的值;
(3)求這個拋物線的對稱軸和頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是長方形,點A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點P從點O出發(fā),以每秒1個單位長度的速度沿O C B A運(yùn)動,點P的運(yùn)動時間為t.

(1)當(dāng)t=2時,求直線PD的解析式。

(2)當(dāng)PBC上,OP+PD有最小值時,求點P的坐標(biāo)。

(3)當(dāng)t為何值時,△ODP是腰長為5的等腰三角形?(直接寫出t的值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB:y=﹣x﹣b分別與x,y軸交于A(6,0)、B兩點,過點B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.

(1)求點B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x﹣k(k≠0)交AB于E,交BC于點F,交x軸于點D,是否存在這樣的直線EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形EFGH是由正方形ABCD經(jīng)過位似變換得到的,點O是位似中心,EF , G , H分別是OA , OBOC , OD的中點,則正方形EFGH與正方形ABCD的面積比是( 。
A.1:6
B.1:5
C.1:4
D.1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點坐標(biāo)分別是O(0,0),A(3,0),B(4,4),C(-2,3),將點O , AB , C的橫坐標(biāo)、縱坐標(biāo)都乘以-2.

(1)畫出以變化后的四個點為頂點的四邊形;
(2)由(1)得到的四邊形與四邊形OABC位似嗎?如果位似,指出位似中心及與原圖形的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖南路大橋于今年5月1日竣工,為徒駭河景區(qū)增添了一道亮麗的風(fēng)景線某校數(shù)學(xué)興趣小組用測量儀器測量該大橋的橋塔高度,在距橋塔AB底部50米的C處,測得橋塔頂部A的仰角為41.5°(如圖)已知測量儀器CD的高度為1米,則橋塔AB的高度約為( 。▍⒖紨(shù)據(jù):sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)

A.34米
B.38米
C.45米
D.50米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD , ADBC , ABBC , AD=1,AB=2,BC=3,PAB邊上的一動點,以PD , PC為邊作平行四邊形PCQD , 則對角線PQ的長的最小值是(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習(xí)冊答案