【題目】如圖,AC是ABCD的對角線,在AD邊上取一點F,連接BF交AC于點E,并延長BF交CD的延長線于點G.
(1)若∠ABF=∠ACF,求證:CE2=EFEG;
(2)若DG=DC,BE=6,求EF的長.
【答案】(1)證明見解析;(2)3.
【解析】
(1)依據(jù)等量代換得到∠ECF=∠G,依據(jù)∠CEF=∠CEG,可得△ECF∽△EGC,進而得出,即CE2=EFEG;
(2)依據(jù)AB=CD=DG,可得AB:CG=1:2,依據(jù)AB∥CG,即可得出EG=12,BG=18,再根據(jù)AB∥DG,可得,進而得到EF=BF-BE=9-6=3.
解:(1)∵AB∥CG,
∴∠ABF=∠G,
又∵∠ABF=∠ACF,
∴∠ECF=∠G,
又∵∠CEF=∠CEG,
∴△ECF∽△EGC,
∴,即CE2=EFEG;
(2)∵平行四邊形ABCD中,AB=CD,
又∵DG=DC,
∴AB=CD=DG,
∴AB:CG=1:2,
∵AB∥CG,
∴,
即,
∴EG=12,BG=18,
∵AB∥DG,
∴,
∴BF=BG=9,
∴EF=BF﹣BE=9﹣6=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=mx2+(3–2m)x+m–2(m≠0)與x軸有兩個不同的交點.
(1)求m的取值范圍;
(2)判斷點P(1,1)是否在拋物線上;
(3)當m=1時,求拋物線的頂點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=mx+n與反比例函數(shù)y=其中m、n為常數(shù),且mn<0,則它們在同一坐標系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,直線y=mx與雙曲線相交于A(﹣1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.
(1)求m、n的值;
(2)求直線AC的解析式.
(3)點P在雙曲線上,且△POC的面積等于△ABC面積的,求點P的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直
線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則
y關于x的函數(shù)圖象大致形狀是【 】
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角標系xOy中,以O為位似中心,將邊長為8的等邊三角形OAB作n次位似變換,經(jīng)第一次變換后得到等邊三角形OA1B1,其邊長OA1縮小為OA的,經(jīng)第二次變換后得到等邊三角形OA2B2,其邊長OA2縮小為OA1的,經(jīng)第三次變換后得到等邊三角形OA3B3,其邊長OA3縮小為OA2的,…按此規(guī)律,經(jīng)第n次變換后,所得等邊出角形OAnBn.的頂點An的坐標為(,0),則n的值是( 。
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE、PF分別交AB、AC于點E、F.給出以下四個結論:
①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF=S△ABC;
④EF=AP.上述結論正確的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,是外一點,過點做的兩條切線,切點分別為.若,則點叫做的切角點.
(1)如圖②,的半徑是1,點O到直線的距離為2.若點是的切角點,且點在直線上,請用尺規(guī)作出點;(保留作圖痕跡,不寫作法)
(2)如圖③,在中,,,,是的內切圓.若點是的切角點,且點在的邊上,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com