【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0),C(0,3),點M是拋物線的頂點.
(1)求二次函數(shù)的關(guān)系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,
①求S與m的函數(shù)關(guān)系式,寫出自變量m的取值范圍.
②當S取得最值時,求點P的坐標;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
【答案】(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,點P的坐標為(,3)或(﹣3+3,12﹣6).
【解析】
(1)將點B,C的坐標代入 即可;
(2)①求出頂點坐標,直線MB的解析式,由PD⊥x軸且 知P(m,﹣2m+6),即可用含m的代數(shù)式表示出S;
②在①的情況下,將S與m的關(guān)系式化為頂點式,由二次函數(shù)的圖象及性質(zhì)即可寫出點P的坐標;
(3)分情況討論,如圖2﹣1,當 時,推出 ,則點P縱坐標為3,即可寫出點P坐標;如圖2﹣2,當 時,證 ,由銳角三角函數(shù)可求出m的值,即可寫出點P坐標;當 時,不存在點P.
(1)將點B(3,0),C(0,3)代入 ,
得 ,
解得 ,
∴二次函數(shù)的解析式為 ;
(2)①∵ ,
∴頂點M(1,4),
設(shè)直線BM的解析式為 ,
將點B(3,0),M(1,4)代入,
得 ,
解得 ,
∴直線BM的解析式為 ,
∵PD⊥x軸且 ,
∴P(m,﹣2m+6),
∴,
即 ,
∵點P在線段BM上,且B(3,0),M(1,4),
∴ ;
②∵,
∵ ,
∴當 時,S取最大值 ,
∴P( ,3);
(3)存在,理由如下:
①如圖2﹣1,當 時,
∵ ,
∴四邊形CODP為矩形,
∴ ,
將 代入直線 ,
得,
∴P( ,3);
②如圖2﹣2,當∠PCD=90°時,
∵ , ,
∴ ,
∵ ,
∴ ,
∴ ,
∴,
∴ ,
∴ ,
解得 (舍去), ,
∴P(,),
③當 時,
∵PD⊥x軸,
∴不存在,
綜上所述,點P的坐標為( ,3)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,點E是線段AC上的一個動點且=k(0<k<1),點F在線段BC上,且DEFH為矩形;過點E作MN⊥BC,分別交AD,BC于點M,N.
(1)求證:△MED∽△NFE;
(2)當EF=FC時,求k的值.
(3)當矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為1,∠A=60,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,…,則四邊形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點.是第一象限內(nèi)反比例函數(shù)圖象上一點,過點作軸的平行線,交直線于點,連接,若的面積為,則點的坐標為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是拋物線上兩點,則y1=y2;④4a+2b+c<0,其中說法正確的( 。
A.①②B.①②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是的反比例函數(shù),下表給出了與的一些值.
… | -4 | -2 | -1 | 1 | 3 | 4 | … | |||
… | -2 | 6 | 3 | … |
(1)求出這個反比例函數(shù)的表達式;
(2)根據(jù)函數(shù)表達式完成上表;
(3)根據(jù)上表,在下圖的平面直角坐標系中作出這個反比例函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點,與軸交于,兩點(點在軸正半軸上),為等腰直角三角形,且面積為,現(xiàn)將拋物線沿方向平移,平移后的拋物線過點時,與軸的另一點為,其頂點為,對稱軸與軸的交點為.
求、的值.
連接,試判斷是否為等腰三角形,并說明理由.
現(xiàn)將一足夠大的三角板的直角頂點放在射線或射線上,一直角邊始終過點,另一直角邊與軸相交于點,是否存在這樣的點,使以點、、為頂點的三角形與全等?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課外興趣小組的同學們要測量被池塘相隔的兩棵樹A,B的距離,他們設(shè)計了如圖的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點,其中4位同學分別測得四組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根據(jù)所測數(shù)據(jù)求得A,B兩樹距離的有( )
A.1組B.2組C.3組D.4組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com