【題目】如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:
①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長(zhǎng)的最小值為4+2.
其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
【答案】①②④
【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對(duì)等弧得到 ,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過(guò)證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH== ,可以求得其最小值,可以判斷④.
解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,
,
∴△BOE≌△COF,
∴BE=CF,
∴ ,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.
③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯(cuò)誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC,∠ACB的平分線相交于點(diǎn)F,過(guò)點(diǎn)F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論正確的是:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長(zhǎng)為AB+AC;④BD=CE.( )
A. ③④ B. ①② C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,平分交于點(diǎn).
(1)如圖①,若于點(diǎn),,求的度數(shù);
(2)如圖②,若交于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知二次函數(shù)中,函數(shù)與自變量的部分對(duì)應(yīng)值如下表:
… | 1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 10 | 5 | 2 | 1 | 2 | 5 | … |
(1)求該二次函數(shù)的解析式;
(2)當(dāng)為何值時(shí),有最小值,最小值是多少?
(3)若,兩點(diǎn)都在該函數(shù)的圖像上,試比較與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生“國(guó)學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:A.唐詩(shī);B.宋詞;C.論語(yǔ);D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中“唐詩(shī)”且小明抽中“宋詞”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的平面直角坐標(biāo)系中,直線m上各點(diǎn)的橫坐標(biāo)都為1(記作直線x=1),A,B,C三點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣3,0),C(﹣1,2).
(1)畫出△ABC關(guān)于直線x=1對(duì)稱的△A1B1C1并寫出A1,B1,C1的坐標(biāo).
(2)若△ABC內(nèi)部有一點(diǎn)H(﹣2,b),求點(diǎn)H關(guān)于直線x=a對(duì)稱的點(diǎn)H1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
一般地,當(dāng)α、β為任意角時(shí),tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.
根據(jù)以上材料,解決下列問(wèn)題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬(wàn)歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實(shí)心石塔(圖1),小華想用所學(xué)知識(shí)來(lái)測(cè)量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測(cè)得塔頂?shù)难鼋菫?/span>75°,小華的眼睛離地面的距離DC為1.72米,請(qǐng)幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù)≈1.732,≈1.414)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com