【題目】在△ABC中,BD是∠ABC的平分線,AD⊥BD,垂足是D.
(1)求證:∠2=∠1+∠C;
(2)若ED∥BC,∠ABD=28°,求∠ADE的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究
(1)如圖①,已知正方形ABCD的邊長為4.點M和N分別是邊BC、CD上兩點,且BM=CN,連接AM和BN,交于點P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.
(2)如圖②,已知正方形ABCD的邊長為4.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點C和D運動.連接AM和BN,交于點P,求△APB周長的最大值;
問題解決
(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點C和A運動.連接AM和BN,交于點P.求△APB周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點、分別是等邊邊、上的點,連接、,若,求證:
(2)如圖2,在(1)問的條件下,點在的延長線上,連接交延長線于點,.若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
12×231=132×21,
13×341=143×31
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每個等式中兩邊數(shù)字是分別對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”
(1)根據(jù)上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對稱等式”:
①52× = ×25
② ×396=693× ;
(2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,且2≤a+b≤9,寫出表示“數(shù)字對稱等式”一般規(guī)律的式子(含a,b),并證明;
(3)若(2)中a,b表示一個兩位數(shù),例如a=11,b=22,則1122×223311=113322×2211,請寫出表示這類“數(shù)字對稱等式”一般規(guī)律的式子(含a,b),并寫出a+b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位準(zhǔn)備組織員工到武夷山風(fēng)景區(qū)旅游,旅行社給出了如下收費標(biāo)準(zhǔn)(如圖所示):
設(shè)參加旅游的員工人數(shù)為x人.
(1)當(dāng)25<x<40時,人均費用為 元,當(dāng)x≥40時,人均費用為 元;
(2)該單位共支付給旅行社旅游費用27000元,請問這次參加旅游的員工人數(shù)共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標(biāo);
(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com