【題目】如圖,在平行四邊形ABCD中,∠B=60°,將△ABC沿對角線AC折疊,點B的對應點落在點E處,且點B,A,E在一條直線上,CE交AD于點F,則圖中等邊三角形共有( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】分析:根據(jù)折疊的性質可得∠E=∠B=60°,進而可證明△BEC是等邊三角形,再根據(jù)平行四邊形的性質可得:AD∥BC,所以可得∠EAF=60°,進而可證明△EFA是等邊三角形,由等邊三角形的性質可得∠EFA=∠DFC=60°,又因為∠D=∠B=60°,進而可證明△DFC是等邊三角形,問題得解.
詳解:∵將△ABC沿對角線AC折疊,點B的對應點落在點E處,
∴∠E=∠B=60°,
∴△BEC是等邊三角形,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠D=∠B=60°,
∴∠B=∠EAF=60°,
∴△EFA是等邊三角形,
∵∠EFA=∠DFC=60°,∠D=∠B=60°,
∴△DFC是等邊三角形,
∴圖中等邊三角形共有3個,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】某商場欲購進一種商品,當購進這種商品至少為10kg,但不超過30kg時,成本y(元/kg)與進貨量x(kg)的函數(shù)關系如圖所示.
(1)求y關于x的函數(shù)解析式,并寫出x的取值范圍.
(2)若該商場購進這種商品的成本為9.6元/kg,則購進此商品多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織學生到距離學校6千米的科技館去參觀,小華因事沒能乘上學校的包車,于是準備在學校門口改乘出租車去科技館,出租車收費標準有兩種類型,如下表:
里程 | 甲類收費(元) | 乙類收費(元) |
3千米以下(包含3千米) | 7.00 | 6.00 |
3千米以上,每增加1千米 | 1.60 | 1.40 |
(1)設出租車行駛的里程為x千米(且x取正整數(shù)),分別寫出兩種類型的總收費(用含x的代數(shù)式表示);
(2)小華身上僅有11元,他乘出租車到科技館車費夠不夠請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十·一”黃金周期間,武漢動物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化單位:萬人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人數(shù)記為,請用的代數(shù)式表示10月2日的游客人數(shù)?
(2)請判斷七天內游客人數(shù)最多的是哪天?請說明理由。
(3)若9月30日的游客人數(shù)為2萬人,門票每人10元。問黃金周期間武漢動物園門票收入是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O在線段AB上,AO=2,OB=1,OC為射線,且∠BOC=60°,動點P以每秒2個單位長度的速度從點O出發(fā),沿射線OC做勻速運動,設運動時間為t秒.
(1)當t= 秒時,則OP= , S△ABP=;
(2)當△ABP是直角三角形時,求t的值;
(3)如圖2,當AP=AB時,過點A作AQ∥BP,并使得∠QOP=∠B,求證:AQBP=3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A的坐標為(2,0),等邊三角形AOC經過平移或軸對稱或旋轉都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是___個單位長度;△AOC與△BOD關于直線對稱,則對稱軸是___;△AOC繞原點O順時針旋轉得到△DOB,則旋轉角度可以是___度;
(2)連結AD,交OC于點E,求∠AEO的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純燃油費用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純燃油費用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D,AD交⊙O于點E.
(1)求證:AC平分∠DAB;
(2)若∠B=60°,CD=2 ,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC、BC邊上運動,且保持AD=CE,連接DE,DF,EF,在此運動過程中,下列結論:(1)△DFE是等腰直角三角形;(2)DE長度的最小值為4;(3)四邊形CDFE的面積保持不變;(4)△CDE面積的最大值是4.正確的結論是( 。
A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (2)(3)(4)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com