【題目】某校組織學生到距離學校6千米的科技館去參觀,小華因事沒能乘上學校的包車,于是準備在學校門口改乘出租車去科技館,出租車收費標準有兩種類型,如下表:

里程

甲類收費(元)

乙類收費(元)

3千米以下(包含3千米)

7.00

6.00

3千米以上,每增加1千米

1.60

1.40

(1)設(shè)出租車行駛的里程為x千米(x取正整數(shù)),分別寫出兩種類型的總收費(用含x的代數(shù)式表示);

(2)小華身上僅有11元,他乘出租車到科技館車費夠不夠請說明理由.

【答案】(1)詳見解析;(2)他乘出租車到科技館車費夠.

【解析】

(1)甲類車總收費=7+超過3千米的付費;乙類車總收費=6+超過3千米的付費;

(2)x=6代入上述式子中看需要多少錢.

(1)甲類總收費為,

乙類總收費為;

(2)當時,甲類需付費為,不夠,

乙類需付費為,

∴他乘出租車到科技館車費夠.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=bx+c和反比例函數(shù)y=在同一平面直角坐標系中的圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖:在直角坐標系中,正方形AOBC的邊長為4,點D、E分別是線段AO,OC上的動點,D點由A點向O點運動,速度為每秒1個單位,E點由B點向O點運動,速度為每秒2個單位,當一個點停止運動時,另一個點也隨之停止.設(shè)運動時間為t(秒)

(1)如圖1,當t為何值時,△DOE的面積為6;

(2)如圖2,連結(jié)CD,AE交于點F,當t為何值時,CD⊥AE;

(3)如圖3,過點DDG//OB,交BC于點G,連結(jié)EG,D,E在運動過程中,直角坐標系中是否存在點H,使得點D,E,H,G四點構(gòu)成的四邊形為菱形?若存在,求出t的值,并直接寫出點G的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將自然數(shù)按如表規(guī)律排列,表中數(shù)2在第二行第一列,與有序數(shù)對對應,數(shù)5對應,數(shù)14對應,根據(jù)這一規(guī)律,數(shù)2014對應的有序數(shù)對為__________.

第一列

第二列

第三列

第四列

第五列

第一行

1

4

5

16

17

第二行

2

3

6

15

第三行

9

8

7

14

第四行

10

11

12

13

第五行

……

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,且與y軸交于點C.

(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點C的坐標;
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(不與A、C重合)經(jīng)過A、E、O三點的圓交直線AB于點F,當△OEF的面積取得最小值時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是邊AB,AC的中點,延長BC到點F,使CF= BC.若AB=10,則EF的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,B=60°,將ABC沿對角線AC折疊,點B的對應點落在點E處,且點B,AE在一條直線上,CEAD于點F,則圖中等邊三角形共有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若反比例函數(shù)y= (k≠0)的圖象經(jīng)過P(﹣2,3),則該函數(shù)不經(jīng)過的圖象的點是(
A.(3,﹣2)
B.(1,﹣6)
C.(﹣1,6)
D.(﹣1,﹣6)

查看答案和解析>>

同步練習冊答案