【題目】已知在半徑為1的上,直線與相切,,連接交于點.
(Ⅰ)如圖①,若,求的長;
(Ⅱ)如圖②,與交于點,若,求的長.
【答案】(Ⅰ);(Ⅱ)-1.
【解析】
(1)由切線的性質(zhì)可知∠OAC=90°,由三角形的內(nèi)角和定理可知∠AOC=30°,由∠AOB=∠AOC+∠BOC可得出∠AOB的度數(shù),結(jié)合OA=OB可得出∠OAB=∠OBA=30°,由此可得出OD=AD,由∠OAB與∠DAC互余可知∠DAC=60°=∠DCA,由此得出△DAC為等邊三角形,從而得出OD=AC,由特殊角的三角函數(shù)值即可得出結(jié)論;
(2)由OC⊥OB且OC=OB可知∠OBE=∠OEB=45°,再由BE∥OA可得出∠AOC=45°,結(jié)合切線性質(zhì)可得出OA=AC,根據(jù)角與角之間的關(guān)系逐步得出∠CAD=∠CDA=67.5°,由此可得出AC=CD,結(jié)合勾股定理即可得出結(jié)論.
解:(1)∵AC與⊙O相切,
∴∠OAC=90°.
∵∠OCA=60°,
∴∠AOC=30°.
∵OC⊥OB,
∴∠AOB=∠AOC+∠BOC=120°.
∵OA=OB,
∴∠OAB=∠OBA=30°,
∴OD=AD,∠DAC=60°
∴AD=CD=AC.
∵OA=1,
∴OD=AC=OAtan∠AOC=.
(2)∵OC⊥OB,
∴∠OBE=∠OEB=45°.
∵BE∥OA,
∴∠AOC=45°,∠ABE=∠OAB,
∴OA=AC,∠OAB=∠OBA=22.5°,
∴∠ADC=∠AOC+∠OAB=67.5°.
∵∠DAC=90°-∠OAB=67.5°=∠ADC,
∴AC=CD.
∵OC==,
∴OD=OC-CD=-1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是所對弦上一動點,點在的延長線上,過點作交于點,連接,已知,,設(shè),兩點間的距離為,的面積為.(當點與點,重合時,的值為0.)
小亮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.
下面是小亮的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 4.47 | 7.07 | 9.00 | 8.94 | 0 |
(2)在平面直角坐標系中,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當的面積為時,的長度約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于點、,與軸相交于點,過點作,與拋物線相交于點.點從點出發(fā),在折線段上以每秒2個單位長度向終點勾速運動,點從點出發(fā),在線段上以每秒1個單位長度向終點勻速運動,兩點同時出發(fā),當其中一個點到達終點時,另一個點也停止運動,連接.設(shè)點的運動時間為,線段的長度的平方為,即(單位長度),
(1)求線段的長;
(2)求關(guān)于的函數(shù)解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊共同承建某高速路隧道工程,隧道總長2000米,甲、乙分別從隧道兩端向中間施工,計劃每天各施工6米.因地質(zhì)情況不同,兩支隊伍每合格完成1米隧道施工所需成本不一樣.甲每合格完成1米,隧道施工成本為6萬元;乙每合格完成1米,隧道施工成本為8萬元.
(1)若工程結(jié)算時乙總施工成本不低于甲總施工成本的,求甲最多施工多少米?
(2)實際施工開始后因地質(zhì)情況比預(yù)估更復(fù)雜,甲乙兩隊每日完成量和成本都發(fā)生變化.甲每合格完成1米隧道施工成本增加m萬元時,則每天可多挖m米,乙因特殊地質(zhì),在施工成本不變的情況下,比計劃每天少挖m米,若最終每天實際總成本比計劃多(11m-8)萬元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)的圖象,其對稱軸為.下列結(jié)論:①;②;③;④若是拋物線上兩點,則.其中正確的結(jié)論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為的直徑,P為BA延長線上的一點,D在上(不與點A,點B重合),連結(jié)PD交于點C,且PC=OB.設(shè),下列說法正確的是( )
A. 若,則
B. 若 ,則
C. 若 ,則
D. 若 ,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年5月3日,中國科學(xué)院在上海發(fā)布了中國首款人工智能芯片:寒武紀(MLU100),該芯片在平衡模式下的等效理論峰值速度達每秒128 000 000 000 000次定點運算,將數(shù)
128 000 000 000 000用科學(xué)計數(shù)法表示為( )
A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】改革開放40年來,中國已經(jīng)成為領(lǐng)先世界的基建強國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點F在線段HG上運動,BC∥HG,AE⊥BC,垂足為點E,AE的延長線交HG于點G,經(jīng)測量,∠ABD=11°,∠ADE=26°,∠ACE=31°,BC=20m,EG=0.6m.
(1)求線段AG的長度;
(2)連接AF,當線段AF⊥AC時,求點F和點G之間的距離.
(所有結(jié)果精確到0.1m.參考數(shù)據(jù):tan11°≈0.19,tan26°≈0.49,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
問題情境:(1)如圖1,四邊形中,,點為邊的中點,連接并延長交的延長線于點,求證:;(表示面積)
問題遷移:(2)如圖2:在已知銳角內(nèi)有一個定點.過點任意作一條直線分別交射線于點.小明將直線繞著點旋轉(zhuǎn)的過程中發(fā)現(xiàn),的面積存在最小值,請問當直線在什么位置時,的面積最小,并說明理由.
實際應(yīng)用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門計劃以公路和經(jīng)過防疫站的一條直線為隔離線,建立個面積最小的三角形隔離區(qū),若測得試求的面積.(結(jié)果保留根號)(參考數(shù)據(jù):)
拓展延伸:(4)如圖4,在平面直角坐標系中,為坐標原點,點的坐標分別為,過點的直線與四邊形一組對邊相交,將四邊形分成兩個四邊形,求其中以點為頂點的四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com