【題目】如圖,已知拋物線y=﹣x2+bx+c交y軸于點A(0,4),交x軸于點B(4,0),點P是拋物線上一動點,過點P作x軸的垂線PQ,過點A作AQ⊥PQ于點Q,連接AP.
(1)填空:拋物線的解析式為 ,點C的坐標 ;
(2)點P在拋物線上運動,若△AQP∽△AOC,求點P的坐標.
【答案】(1)y=﹣x2+3x+4,(-1,0)(2)點P的坐標為(,)或(,)
【解析】分析:(1)把A、B的坐標代入拋物線解析式,即可求得b、c的值,從而得到拋物線的解析式.令y=0,解方程可求得點C的坐標.
(2)由點A、點C的坐標,得到.設P(m, ﹣m2+3m+4).分兩種情況討論:
①當點P在直線AQ下方時,QP=4-(﹣m2+3m+4)= m2-3m,
由△AQP∽△AOC得:,即:,解方程即可得到結論.
當時,﹣m2+3m+4=,此時點P的坐標為();
②當點P在直線AQ上方時,PQ=﹣m2+3m+4-4=﹣m2+3m,
由△AQP∽△AOC得:,即:,解方程即可得到結論.
詳解:(1)∵拋物線y=﹣x2+bx+c交y軸于點A(0,4),交x軸于點B(4,0),
∴,解得:,∴拋物線的解析式為:y=﹣x2+3x+4.
令y=0,得:﹣x2+3x+4=0,解得:x=4或x=-1,∴點C的坐標為(-1,0).
(2)∵點A的坐標為(0,4),點C的坐標為(-1,0),∴.
∵點P的橫坐標為m,∴P(m, ﹣m2+3m+4).
①當點P在直線AQ下方時,QP=4-(﹣m2+3m+4)= m2-3m,
由△AQP∽△AOC得:,即:,
∴(舍去)或.
當時,﹣m2+3m+4=,此時點P的坐標為();
②當點P在直線AQ上方時,PQ=﹣m2+3m+4-4=﹣m2+3m,
由△AQP∽△AOC得:,即:,
∴ =0(舍去)或=,此時P點坐標為().
綜上所述:點P的坐標為()或().
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=54°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】望江中學為了了解學生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機抽查了部分學生進行調查統(tǒng)計,并將調查統(tǒng)計的結果分為:每天誦讀時間t≤20分鐘的學生記為A類,20分鐘<t≤40分鐘的學生記為B類,40分鐘<t≤60分鐘的學生記為C類,t>60分鐘的學生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)m=%,n=%,這次共抽查了名學生進行調查統(tǒng)計;
(2)請補全上面的條形統(tǒng)計圖;
(3)如果該校共有1200名學生,請你估計該校C類學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+b與反比例函數(shù)y=(x>0)的圖象交于點A(2,6)和B(m,1)
(1)填空:一次函數(shù)的解析式為 ,反比例函數(shù)的解析式為 ;
(2)點E為y軸上一個動點,若S△AEB=5,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)《北京晚報》介紹,自2009年故宮博物院年度接待觀眾首次突破1000萬人次之后,每年接待量持續(xù)增長,到2018年突破1700萬人次,成為世界上接待量最多的博物館.特別是隨著《我在故宮修文物》、《上新了,故宮》等一批電視文博節(jié)目的播出,社會上再次掀起故宮熱.于是故宮文創(chuàng)營銷人員為開發(fā)針對不同年齡群體的文創(chuàng)產(chǎn)品,隨機調查了部分參觀故宮的觀眾的年齡,整理并繪制了如下統(tǒng)計圖表.
2018年參觀故宮觀眾年齡頻數(shù)分布表
年齡x/歲 | 頻數(shù)/人數(shù) | 頻率 |
20≤x<30 | 80 | b |
30≤x<40 | a | 0.240 |
40≤x<50 | 35 | 0.175 |
50≤x<60 | 37 | c |
合計 | 200 | 1.000 |
(1)求表中a,b,c的值;
(2)補全頻數(shù)分布直方圖;
(3)從數(shù)據(jù)上看,年輕觀眾(20≤x<40)已經(jīng)成為參觀故宮的主要群體.如果今年參觀故宮人數(shù)達到2000萬人次,那么其中年輕觀眾預計約有 萬人次.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某印刷廠有甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要.兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關系如圖所示:
(1)填空:甲種收費的函數(shù)表達式是 ,乙種收費的函數(shù)表達式是 .
(2)請你根據(jù)不同的印刷數(shù)量幫忙確定選擇哪種印刷方式較合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=kx+b(k≠0)與直線y=-x+4的交點為P(3,m),與y軸交于點A.
(1)求m的值;
(2)如果△PAO的面積為3,求直線y=kx+b的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結BF交AC于點M,連結DE、BO.若∠COB=60°,FO=FC,則下列結論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com