【題目】閱讀下列材料并填空: 在體育比賽中,我們常常會(huì)遇到計(jì)算比賽場(chǎng)次的問題,這時(shí)我們可以借助數(shù)線段的方法來計(jì)算.比如在一個(gè)小組中有 4 個(gè)隊(duì),進(jìn)行單循環(huán)比賽,我們要計(jì)算總的比賽場(chǎng)次,我們就 設(shè)這四個(gè)隊(duì)分別為 A、B、C、D,并把它們標(biāo)在同一條線段上,如下圖:
因?yàn)閱窝h(huán)比賽就是每?jī)蓚(gè)隊(duì)之間都要比賽一場(chǎng),這就相當(dāng)于,在上述圖形中四個(gè)點(diǎn)連接線段,按一定規(guī)律得到的線段有:
AB,AC,AD…………3 條
BC,BD………………2 條
CD……………………1 條
總的線段條數(shù)是 3+2+1=6
所以可知 4 個(gè)隊(duì)進(jìn)行單循環(huán)比賽共比賽六場(chǎng).
(1).類比上述想法,若一個(gè)小組有 6 個(gè)隊(duì),進(jìn)行單循環(huán)比賽,則總的比賽場(chǎng)次是_____
(2).類比上述想法,若一個(gè)小組有 n 個(gè)隊(duì),進(jìn)行單循環(huán)比賽,則總的比賽場(chǎng)次是_____
(3).我們知道 2006 年世界杯共有 32 支代表隊(duì)參加比賽,共分成 8 個(gè)小組,每組 4 個(gè) 代表隊(duì).第一階段每個(gè)小組進(jìn)行單循環(huán)比賽.則第一階段共 需 要 進(jìn) 行_______ 場(chǎng)比賽.
(4).若分成 m 個(gè)小組,每個(gè)小組有 n 個(gè)隊(duì),第一階段每個(gè)小組進(jìn)行單循環(huán)比賽.則第 一階段共需要進(jìn)行_____________場(chǎng)比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱為第二次操作;……依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖1,□ABCD中,若AB=1,BC=2,則□ABCD為1階準(zhǔn)菱形.
(1)判斷與推理:
①鄰邊長(zhǎng)分別為2和3的平行四邊形是 階準(zhǔn)菱形;
②小明為了剪去一個(gè)菱形,進(jìn)行如下操作:如圖2,把□ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請(qǐng)證明四邊形ABEF是菱形.
(2)操作、探究與計(jì)算:
①已知□ABCD是鄰邊長(zhǎng)分別為1,a(a>1),且是3階準(zhǔn)菱形,請(qǐng)畫出□ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;
②已知□ABCD的鄰邊長(zhǎng)分別為a,b(a>b),滿足a=6b+r,b=5r(r>0),則□ABCD
是 階準(zhǔn)菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的斜邊BC為一邊作正方形BCDE,設(shè)正方形的中心為O,連結(jié)AO,如果AB=3,AO=,那么AC的長(zhǎng)等于__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到A1B1C1.
(1)在圖中畫出△A1B1C1;
(2)點(diǎn)A1,B1,C1的坐標(biāo)分別為 、 、 ;
(3)若y軸有一點(diǎn)P,使△PBC與△ABC面積相等,求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知有理數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示.
(1)已知a=–2.3,b=0.4,計(jì)算|a+b|–|a|–|1–b|的值;
(2)已知有理數(shù)a、b,計(jì)算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請(qǐng)從以下一元二次方程中任選兩個(gè),并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個(gè)方程.
① ② ③ ④
我選擇第 個(gè)方程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為矩形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知ABCD中,AD=2AB,F(xiàn)是BC的中點(diǎn),作AE⊥CD,垂足E在線段CD上,連結(jié)EF、AF,下列結(jié)論:①2∠BAF=∠BAD;②EF=AF;③S△ABF≤S△AEF;④∠BFE=3∠CEF.中一定成立的是( )
A. ①②④ B. ①③ C. ②③④ D. ①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com