【題目】如圖,PQ為圓O的直徑,點B在線段PQ的延長線上,OQ=QB=1,動點A在圓O的上半圓運動(含P、Q兩點),
(1)當線段AB所在的直線與圓O相切時,求弧AQ的長(圖1);
(2)若∠AOB=120°,求AB的長(圖2);
(3)如果線段AB與圓O有兩個公共點A、M,當AO⊥PM于點N時,求 的值(圖3).
【答案】(1); (2); (3).
【解析】(1)根據(jù)直角三角形的性質求出∠B的度數(shù),得到∠AOB的度數(shù),再根據(jù)弧長的計算公式進行求解即可;
(2)連接AP,過點A作AM⊥BP于M,根據(jù)特殊角的三角函數(shù)值和已知條件求出AM,再根據(jù)BM=OM+OB,求出BM,最后根據(jù)勾股定理求出AB;
(3)連接MQ,根據(jù)PQ是圓O的直徑和AO⊥PM,得出ON∥MQ,求出ON=AO,設ON=x,則AO=4x,根據(jù)OA的值求出x的值,再根據(jù)PN=,求出PN,最后根據(jù)特殊角的三角函數(shù)值即可得出答案.
解:(1)∵直線AB與圓O相切,
∴∠OAB=90°,
∵OQ=QB=1,
∴OA=1,OB=2,
∴OA=OB,
∴∠B=30°,
∴∠AOB=60°,
∴AQ==;
(2)如圖1,
連接AP,過點A作AM⊥BP于M,
∵∠AOB=120°,∴∠AOP=60°,
∵OM=,∴BM=OM+OB=+2=,
∴AB===;
(3)如圖2,連接MQ,
∵PQ為圓O的直徑,∴∠PMQ=90°,
∵ON⊥PM,∴AO∥MQ,
∵PO=OQ,
∴ON=MQ,
∵OQ=BQ,
∴MQ=AO,
∴ON=AO,
設ON=x,則AO=4x,
∵OA=1,
∴4x=1,
∴x=,
∴ON=,
∴PN===,
==.
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎價和浮動價兩部分組成,(即出廠價=基礎價+浮動價)其中基礎價與薄板的大小無關,是固定不變的,浮動價與薄板的邊長x成正比例,在營銷過程中得到了表格中的數(shù)據(jù),已知出廠一張邊長為40cm的薄板,獲得利潤是26元.(利潤=出廠價-成本價)
薄板的邊長(cm) | 20 | 30 |
出廠價(元/張) | 50 | 70 |
(1)求一張薄板的出廠價y與邊長x之間滿足的函數(shù)關系式;
(2)求一張薄板的利潤p與邊長x之間的函數(shù)關系式;
(3)若一張薄板的利潤是34元,且成本最低,此時薄板的邊長為多少?當薄板的邊長為多少時,所獲利潤最大,求出這個最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批單價為20元的日用品,如果以單價30元銷售,那么半個月內可以售出400件.根據(jù)銷售經(jīng)驗,提高單價會導致銷售量的減少,即銷售單價每提高1元,銷售量相應減少20件.如果售價為x元,總利潤為y元。
(1)寫出y與x的函數(shù)關系式
(2)當售價x為多少元時,總利潤為y最大,最大值是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2-(2k+1)x+4(k-0.5)=0
(1)判斷方程根的情況;
(2)k為何值時,方程有兩個相等的實數(shù)根,并求出此時方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在全運會射擊比賽的選拔賽中,運動員甲10次射擊成績的統(tǒng)計表(表1)和扇形統(tǒng)計圖如下:
命中環(huán)數(shù) | 10 | 9 | 8 | 7 |
命中次數(shù) | 3 | 2 |
(1)根據(jù)統(tǒng)計表(圖)中提供的信息,補全統(tǒng)計表及扇形統(tǒng)計圖;
(2)已知乙運動員10次射擊的平均成績?yōu)?環(huán),方差為1.2,如果只能選一人參加比賽,你認為應該派誰去?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC
(1)①用直尺和圓規(guī)作出∠ACB的角平分線CD;(不寫作法,但保留作圖痕跡)
②過點D畫出△ADC的高DE和△DCB的高DF;
(2)量出DE,DF的長度,你有怎樣的發(fā)現(xiàn)?并把你的發(fā)現(xiàn)用文字語言表達出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com