【題目】已知關(guān)于x的方程x2-(2k+1)x+4(k-0.5)=0
(1)判斷方程根的情況;
(2)k為何值時,方程有兩個相等的實數(shù)根,并求出此時方程的根.
【答案】(1)見解析。2)x1= x 2=2.
【解析】(1)根據(jù)△=b2-4ac是大于零還是等于零還是小于零的情況來判斷方程根的情況;
(2)根據(jù)方程有兩個相等的實數(shù)根的情況直接說明b2-4ac=0得出(2k-3)2=0,解出k的值,再把k的值代入原式求出方程的根.
解:①∵△=(2k+1)2-4×1×4(k-)=4k2+4k+1-16k+8=4k2-12k+9=(2k-3)2≥0,
∴該方程有兩個實根;
②若方程有兩個相等的實數(shù)根,則△=b2-4ac=0,∴(2k-3)2=0,解得: ,
∴時,方程有兩個相等的實數(shù)根;把時代入原式得:
x2-(2×+1)x+4()=0,x2-4x+4=0,解得:x1= x 2=2.
“點睛”本題是對根的判別式與根與系數(shù)關(guān)系的綜合考查,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0方程有兩個不相等的實數(shù)根;(2)△=0方程有兩個相等的實數(shù)根;(3)△<0方程沒有實數(shù)根.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)概念理解
如圖1,在四邊形ABCD中,添加一個條件使得四邊形ABCD是“等鄰邊四邊形”.請寫出你添加的一個條件.
(2)問題探究
①小紅猜想:對角線互相平分的“等鄰邊四邊形”是菱形.她的猜想正確嗎?請說明理由。
②如圖2,小紅畫了一個Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿
∠ABC的平分線BB'方向平移得到△A'B'C',連結(jié)AA',BC'.小紅要是平移后的四邊形ABC'A'是“等鄰邊四邊形”,應(yīng)平移多少距離(即線段BB'的長)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PQ為圓O的直徑,點B在線段PQ的延長線上,OQ=QB=1,動點A在圓O的上半圓運動(含P、Q兩點),
(1)當線段AB所在的直線與圓O相切時,求弧AQ的長(圖1);
(2)若∠AOB=120°,求AB的長(圖2);
(3)如果線段AB與圓O有兩個公共點A、M,當AO⊥PM于點N時,求 的值(圖3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.3a2b-a2b=2
B.單項式-x2的系數(shù)是-1
C.使式子(x+2)0有意義的x的取值范圍是x≠0
D.若分式 的值等于0,則a=±1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是( )
A.AB=AD
B.CA平分∠BCD
C.AB=BD
D.△BEC≌△DEC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題是真命題是( )
A.兩個無理數(shù)的和仍是無理數(shù);B.垂線段最短;
C.垂直于同一直線的兩條直線平行;D.兩直線平行,同旁內(nèi)角相等;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校實施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖).請根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計圖補充完整;
(3)為了共同進步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com