【題目】閱讀下列材料,并用相關(guān)的思想方法解決問題.

例:若多項(xiàng)式分解因式的結(jié)果中有因式,求實(shí)數(shù)的值.

解:設(shè)

,則

是方程的解

所以,即,所以

解決問題:(1)若多項(xiàng)式分解因式的結(jié)果中有因式,求實(shí)數(shù)的值;

2)若多項(xiàng)式分解因式的結(jié)果中有因式

①求出的值;

②直接寫出方程的解.

【答案】1;(2)①;②

【解析】

1)按照材料中的思路,可得是方程的解,代入求出q即可;

2)①按照材料中的思路,可得,是方程的解,代入得出關(guān)于mn的二元一次方程組,解方程組即可得出答案;

②代入m、n的值,對(duì)進(jìn)行因式分解,進(jìn)而求出方程的解.

解:(1)設(shè),

,則,

,

所以是方程的解,

所以,即

所以;

2)①設(shè),

,則,

,由,

,是方程的解,

所以,整理得:,

解得:

②∵m5,n2,

,

,

當(dāng)時(shí),

時(shí),得,

,

∴方程的解為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有4個(gè)大小、質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1、2、3、4.

(1)攪勻后從中任意摸出1個(gè)球,求摸出的乒乓球球面上數(shù)字為1的概率;

(2)攪勻后先從中任意摸出1個(gè)球(不放回),再從余下的3個(gè)球中任意摸出1個(gè)球,求2次摸出的乒乓球球面上數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD,過點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AF,BF.

1)求證:四邊形BFDE是矩形;

2)若CF3,BF4,DF5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知C是線段AB上的一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作正方形ACDE和正方形CBGF,點(diǎn)FCD上,聯(lián)結(jié)AF、BDBDFG交于點(diǎn)M,點(diǎn)N是邊AC上的一點(diǎn),聯(lián)結(jié)ENAF 與點(diǎn)H

1)求證:AF=BD;

2)如果,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某商場(chǎng)地下停車場(chǎng)有5個(gè)出入口,每天早晨7點(diǎn)開始對(duì)外停車且此時(shí)車位空置率為90%,在每個(gè)出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個(gè)進(jìn)口和3個(gè)出口,6小時(shí)車庫恰好停滿;如果開放3個(gè)進(jìn)口和2個(gè)出口,3小時(shí)車庫恰好停滿.2019年清明節(jié)期間,由于商場(chǎng)人數(shù)增多,早晨7點(diǎn)時(shí)的車位空置率變?yōu)?/span>60%,因?yàn)檐噹旄脑欤荒荛_放1個(gè)進(jìn)口和1個(gè)出口,則從早晨7點(diǎn)開始經(jīng)過______小時(shí)車庫恰好停滿.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的大學(xué)生參與到志愿服務(wù)中,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng),經(jīng)過初選,兩所學(xué)校各有300名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.

a.甲學(xué)校學(xué)生成績(jī)的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,).

b.甲學(xué)校學(xué)生成績(jī)?cè)?/span>這一組是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙學(xué)校學(xué)生成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

83.3

84

78

46%

根據(jù)以上信息,回答下列問題:

1)甲學(xué)校學(xué)生,乙學(xué)校學(xué)生的綜合素質(zhì)展示成績(jī)同為82分,這兩人在本校學(xué)生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);

2)根據(jù)上述信息,推斷________學(xué)校綜合素質(zhì)展示的水平更高,理由為:__________________________

(至少從兩個(gè)不同的角度說明推斷的合理性).

3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到________分的學(xué)生才可以入選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時(shí),y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)EBC邊的中點(diǎn),動(dòng)點(diǎn)MCD邊上運(yùn)動(dòng),以EM為折痕將△CEM折疊得到△PEM,連接PA,若AB=4,∠BAD=60°,則PA的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線ykxk0)相交于點(diǎn)AB,以AB為底作等腰三角形,使∠ACB120°,且點(diǎn)C的位置隨著k的不同取值而發(fā)生變化,但點(diǎn)C始終在某一函數(shù)圖象上,則這個(gè)圖象所對(duì)應(yīng)的函數(shù)解析式為__

查看答案和解析>>

同步練習(xí)冊(cè)答案