【題目】如圖,在⊙O中,=,∠ACB=60°.
(1)求證:∠AOB=∠BOC=∠AOC;
(2)若點(diǎn)D是的中點(diǎn),求證:四邊形OADB是菱形.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)圓心角、弧、弦的關(guān)系,由得AB=AC,加上∠ACB=60°,則可判斷△ABC是等邊三角形,所以AB=BC=CA,于是根據(jù)圓心角、弧、弦的關(guān)系即可得到∠AOB=∠BOC=∠AOC;
(2)連接OD,如圖,由D是的中點(diǎn)得,則根據(jù)圓周角定理得∠AOD=∠BOD=∠ACB=60°,易得△OAD和△OBD都是等邊三角形,則OA=AD=OD,OB=BD=OD,所以OA=AD=DB=BO,于是可判斷四邊形OADB是菱形.
(1)∵,
∴AB=AC,△ABC是等腰三角形,
又∠ACB=60°,
∴△ABC是等邊三角形,AB=BC=CA,
∴∠AOB=∠BOC=∠AOC;
(2)如圖,連接OD,
∵D是的中點(diǎn),
∴ .
∴∠AOD=∠BOD=∠AOB=∠ACB=60°,
又OD=OA,OD=OB,
∴△OAD和△OBD都是等邊三角形,
∴OA=AD=OD,OB=BD=OD,
∴OA=AD=DB=BO,
∴四邊形OADB是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的對(duì)角線,交于點(diǎn),平分交于點(diǎn),交于點(diǎn),且,,連接.下列結(jié)論:①;②;③;④.其中正確的是( )
A.①②④B.①③④C.②③④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一塊直角三角形ABC,∠B=90°,AB=3,BC=4,截得兩個(gè)正方形DEFG,BHJN,設(shè)S1=DEFG的面積,S2=BHJN的面積,則S1、S2的大小關(guān)系是( 。
A.S1>S2B.S1<S2C.S1=S2D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小芳參加圖書館標(biāo)志設(shè)計(jì)大賽,他在邊長(zhǎng)為2的正方形ABCD內(nèi)作等邊△BCE,并與正方形的對(duì)角線交于F、G點(diǎn),制成了圖中陰影部分的標(biāo)志,則這個(gè)標(biāo)志AFEGD的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②3a+c>0;
③方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
④當(dāng)y>3時(shí),x的取值范圍是0≤x<2;
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有兩點(diǎn)A(6,0),B(0,3),如果點(diǎn)C在x軸上(C與A不重合),當(dāng)點(diǎn)C的坐標(biāo)為 時(shí),△BOC與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)、分別為、的中點(diǎn),若點(diǎn)剛好落在邊上,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是二次函數(shù)y=ax2+bx+c的x,y的部分對(duì)應(yīng)值:
x | … | 0 | 1 | 2 | … | ||||
y | … | ﹣1 | m | ﹣1 | n | … |
則對(duì)于該函數(shù)的性質(zhì)的判斷:①該二次函數(shù)有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根分別位于﹣<x<0和2<x<之間;④當(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大;其中正確的是( )
A.②③B.②④C.①③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(-2,4),B(4,4),C(6,0).
(1)△ABC的面積是 .
(2)請(qǐng)以原點(diǎn)O為位似中心,畫出△A'B'C',使它與△ABC的相似比為1:2,變換后點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B',點(diǎn)B'在第一象限;
(3)若P(a,b)為線段BC上的任一點(diǎn),則變換后點(diǎn)P的對(duì)應(yīng)點(diǎn)P' 的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com