【題目】ABC中,∠ABC45°,F是高AD與高BE的交點(diǎn).

1)求證:ADC≌△BDF

2)連接CF,若CD4,求CF的長.

【答案】1)見解析;(24

【解析】

1)先證明ADBD,再證明∠FBD∠DAC,從而利用ASA證明△BDF≌△ADC

2)利用全等三角形對(duì)應(yīng)邊相等得出DFCD4,根據(jù)勾股定理求出CF即可.

1)證明:∵AD⊥BC,

∴∠FDB∠ADC90°,

∵∠ABC45°,

∴∠BAD45°∠ABD,

∴ADBD

∵BE⊥AC,

∴∠AEF∠FDB90°,

∵∠AFE∠BFD,

由三角形內(nèi)角和定理得:∠CAD∠FBD,

△ADC△BDE

∴△ADC≌△BDEASA);

2)解:∵△ADC≌△BDE,CD4

∴DFCD4,

Rt△FDC中,由勾股定理得:CF4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(滿分8分)我們把依次連接任意四邊形各邊中點(diǎn)得到的四邊形叫做中點(diǎn)四邊形.

如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),依次連接各邊中點(diǎn)得到中點(diǎn)四邊形EFGH.

(1)這個(gè)中點(diǎn)四邊形EFGH的形狀是____________;

(2)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠A=90°,BD=BC,點(diǎn)ECD的中點(diǎn),射線BEAD的延長線于點(diǎn)F,連接CF

(1)求證:四邊形BCFD是菱形;

(2)若AD=1,BC=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC=5cosB=,P是邊AB上一點(diǎn),以P為圓心,PB為半徑的P與邊BC的另一個(gè)交點(diǎn)為D,聯(lián)結(jié)PD、AD

(1)求△ABC的面積;

(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

(3)如果△APD是直角三角形,求PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知是等邊三角形,點(diǎn)的坐標(biāo)是,點(diǎn)在第一象限,的平分線交軸于點(diǎn),把繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),使邊重合,得到,連接.求:的長及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,ABAC,DBC邊上任意一點(diǎn),EAC邊上,且ADAE

1)若∠BAD40°,求∠EDC的度數(shù);

2)若∠EDC15°,求∠BAD的度數(shù);

3)根據(jù)上述兩小題的答案,試探索∠EDC與∠BAD的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使ADE=30°.

(1)求證:ABD∽△DCE;

(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(3)當(dāng)ADE是等腰三角形時(shí),求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖①由4根火柴棍圍成;圖②由12根火柴棍圍成;圖③由24根火柴棍圍成;…按此規(guī)律,則第⑥個(gè)圖形由( )根火柴棍圍成.

A. 60 B. 72 C. 84 D. 112

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O是以AB為直徑的ABC的外接圓,過點(diǎn)A作O的切線交OC的延長線于點(diǎn)D,交BC的延長線于點(diǎn)E.

(1)求證:DAC=DCE;

(2)若AB=2,sinD=,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案