【題目】在平面直角坐標系xOy中,拋物線y=mx2-2mx-3 (m≠0)與y軸交于點A,其對稱軸與x軸交于點B頂點為C點.
(1)求點A和點B的坐標;
(2)若∠ACB=45°,求此拋物線的表達式;
(3)在(2)的條件下,垂直于軸的直線與拋物線交于點P(x1,y1)和Q(x2,y2),與直線AB交于點N(x3,y3),若x3<x1<x2,結合函數(shù)的圖象,直接寫出x1+x2+x3的取值范圍為.
【答案】(1)A(0,-3),B(1,0);(2)y=x2-2x-3;(3).
【解析】試題分析:(1)利用待定系數(shù)法、對稱軸公式即可解決問題;
(2)確定點C坐標,利用待定系數(shù)法即可解決問題;
(3)如圖,當直線l在直線l1與直線l2之間時,x3<x1<x2,求出直線l經(jīng)過點A、點C時的x1+x3+x2的值即可解決問題;
試題解析:解:(1)∵拋物線y=mx2﹣2mx﹣3 (m≠0)與y軸交于點A,∴點A的坐標為(0,﹣3);
∵拋物線y=mx2﹣2mx﹣3 (m≠0)的對稱軸為直線x=1,∴點B的坐標為(1,0).
(2)∵∠ACB=45°,∴點C的坐標為(1,﹣4),把點C代入拋物線y=mx2﹣2mx﹣3
得出m=1,∴拋物線的解析式為y=x2﹣2x﹣3.
(3)如圖,當直線l1經(jīng)過點A時,x1=x3=0,x2=2,此時x1+x3+x2=2,當直線l2經(jīng)過點C時,直線AB的解析式為y=3x﹣3,∵C(1,﹣4),∴y=﹣4時,x=﹣.
此時,x1=x2=1,x3=﹣,此時x1+x3+x2=,當直線l在直線l1與直線l2之間時,x3<x1<x2,∴.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x,y的方程組
(1)請直接寫出方程的所有正整數(shù)解
(2)若方程組的解滿足x+y=0,求m的值
(3)無論實數(shù)m取何值,方程x-2y+mx+5=0總有一個固定的解,請直接寫出這個解?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都為1,△ABC的頂點都在網(wǎng)格線的交點上,點B關于y軸的對稱點的坐標為(2,0),點C關于x軸的對稱點的坐標為(﹣1,﹣2).
(1)根據(jù)上述條件,在網(wǎng)格中建立平面直角坐標系xOy;
(2)畫出△ABC分別關于y軸的對稱圖形△A1B1C1;
(3)寫出點A關于x軸的對稱點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,△ADC與△ABC關于直線AC對稱,AE與CD垂直交BC的延長線于點E,∠EAF=45°,且AF與AB在AE的兩側,EF⊥AF.
(1)依題意補全圖形.
(2)①在AE上找一點P,使點P到點B,點C的距離和最短;
②求證:點D到AF,EF的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【背景知識】數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結 合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點 A、點 B 表示的數(shù)分別為 a、b,則A、B 兩點之間的距離 AB= ,線段 AB 的中點表示的數(shù)為 .
【問題情境】如圖,數(shù)軸上點A表示的數(shù)為-2,點B表示的數(shù)為8,點P從點 A 出發(fā), 以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒 2個單 位長度的速度向左勻速運動,設運動時間為t秒(t>0).
【綜合運用】(1) 填空:
①A、B兩點之間的距離AB=__________,線段AB的中點表示的數(shù)為_______;
②用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為_______;點Q表示的數(shù)為_____.
(2) 求當t為何值時,P、Q 兩點相遇,并寫出相遇點所表示的數(shù);
(3)求當t為何值時,PQ=AB;
(4)若點M為PA的中點,點N為PB的中點,點 P在運動過程中,線段MN的長度是否發(fā) 生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填入相應的集合里:0,-3.14,-(-10),,-4,15%,,0.3,,10.01001000100001…
非負整數(shù)集合:{ …}
正分數(shù)集合:{ …}
無理數(shù)集合:{ …}
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀第①小題的計算方法,再計算第②小題.
①–5+(–9)+17+(–3)
解:原式=[(–5)+(–)]+[(–9)+(–)]+(17+)+[(–3+(–)]
=[(–5)+(–9)+(–3)+17]+[(–)+(–)+(–)+]
=0+(–1)
=–1.
上述這種方法叫做拆項法.靈活運用加法的交換律、結合律可使運算簡便.
②仿照上面的方法計算:(﹣2000)+(﹣1999)+4000+(﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側一點,且AB=20,
(1)寫出數(shù)軸上點B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對值,實際上也可理解為5與3兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動點P從O點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設運動時間為t(t>0)秒.求當t為多少秒時?A,P兩點之間的距離為2;
(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設運動時間為t(t>0)秒.問當t為多少秒時?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知有理數(shù)a、b在數(shù)軸上的對應點如圖所示.
(1)已知a=–2.3,b=0.4,計算|a+b|–|a|–|1–b|的值;
(2)已知有理數(shù)a、b,計算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com