【題目】閱讀下列材料,并完成任務(wù). 三角形的外心定義:三角形三邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)叫做三角形的外心,如圖1,直線分別是邊的垂直平分線.
求證:直線相交于一點(diǎn).
證明:如圖2,設(shè)相交于點(diǎn),分別連接
∵是的垂直平分線,
∴,(依據(jù)1)
∵是的垂直平分線,
∴,
∴,(依據(jù)2)
∵是的垂直平分線,
∴點(diǎn)在上,(依據(jù)3)
∴直線相交于一點(diǎn).
(1)上述證明過程中的“依據(jù)1”“依據(jù)2”“依據(jù)3”分別指什么?
(2)如圖3,直線分別是的垂直平分線,直線相交于點(diǎn),點(diǎn) 是的外心,交于點(diǎn),交于點(diǎn),分別連接、、、、. 若,的周長為,求的周長.
【答案】(1)依據(jù)1:線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等;依據(jù)2:等量代換;依據(jù)3:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;(2)
【解析】
(1)根據(jù)推理過程和垂直平分線的性質(zhì)和判定得出答案
(2)根據(jù)垂直平分線的性質(zhì)得出的周長=BC和,再根據(jù)的周長即可得出答案
(1)依據(jù)1:線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等
依據(jù)2:等量代換
依據(jù)3:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
(2)解:∵直線是的的垂直平分線
∴,
∵直線是的的垂直平分線
∴
∴,的周長,
∵的周長為
∴,
∴的周長為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點(diǎn)A(﹣2,1)和點(diǎn)B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M.
(1)求拋物線C1的表達(dá)式;
(2)直接用含t的代數(shù)式表示線段MN的長;
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;
(4)在(3)的條件下,設(shè)拋物線C1與y軸交于點(diǎn)P,點(diǎn)M在y軸右側(cè)的拋物線C2上,連接AM交y軸于點(diǎn)k,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQ和QN,當(dāng)KQ=1且∠KNQ=∠BNP時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圖形ABCD是由兩個(gè)二次函數(shù)y1=kx2+m(k<0)與y2=ax2+b(a>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接寫出這兩個(gè)二次函數(shù)的表達(dá)式;
(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個(gè)頂點(diǎn)在圖形ABCD上),并說明理由;
(3)如圖2,連接BC,CD,AD,在坐標(biāo)平面內(nèi),求使得△BDC與△ADE相似(其中點(diǎn)C與點(diǎn)E是對(duì)應(yīng)頂點(diǎn))的點(diǎn)E的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN.
(1)觀察猜想:
圖1中,PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 .
(2)探究證明:
將圖1中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;
(3)拓展延伸:
把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別是雙曲線在第一、三象限上的點(diǎn),軸,軸,垂足分別為,,點(diǎn)是與軸的交點(diǎn).設(shè)的面積為,的面積為,的面積為,則有( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,則∠1-∠2的度數(shù)是( )
A. 32° B. 64° C. 65° D. 70°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com