【題目】在直角坐標(biāo)系xOy中,對于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.請問:若點(diǎn)P在函數(shù)y=﹣x2+16(﹣5≤x≤a)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是﹣16≤y′≤16,則實(shí)數(shù)a的值是____.
【答案】4.
【解析】
根據(jù)新定義,分析函數(shù)y=-x2+16在新定義下點(diǎn)P的“可控變點(diǎn)”橫坐標(biāo)與縱坐標(biāo)的對應(yīng)關(guān)系,在分析a的取值范圍.
由定義可知:
①當(dāng)0≤x≤a時,y′=﹣x2+16,此時,拋物線y′的開口向下,故當(dāng)0≤x≤a時,y′隨x的增大而減。ㄈ鐖D)
即:﹣a2+16≤y′≤16,
②當(dāng)﹣5≤x<0時,y′=x2﹣16,拋物線y′的開口向上,故當(dāng)﹣5≤x<0時,y′隨x的增大而減。ㄈ鐖D),
即:﹣16<y′≤9,
∵點(diǎn)P在函數(shù)y=﹣x2+16(﹣5≤x≤a)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是﹣16≤y′≤16,
∴﹣a2+16≥﹣16
∴a2≤32,
∴﹣4≤a≤4,
又∵﹣5≤x≤a,
∴a=4,
在函數(shù)y=﹣x2+16圖象上的點(diǎn)P,當(dāng)a=4時,其“可控變點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是﹣16≤y′≤16,
故答案為4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是線段上一點(diǎn),,以點(diǎn)為圓心,的長為半徑作⊙,過點(diǎn)作的垂線交⊙于,兩點(diǎn),點(diǎn)在線段的延長線上,連接交⊙于點(diǎn),以,為邊作.
(1)求證:是⊙的切線;
(2)若,求四邊形與⊙重疊部分的面積;
(3)若,,連接,求和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,,AC、BD交于點(diǎn)O,點(diǎn)P、Q分別是AB、BD上的動點(diǎn),點(diǎn)P的運(yùn)動路徑是,點(diǎn)Q的運(yùn)動路徑是BD,兩點(diǎn)的運(yùn)動速度相同并且同時結(jié)束.若點(diǎn)P的行程為x,的面積為y,則y關(guān)于x的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊△ABC中,AB=6cm,動點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度沿AB勻速運(yùn)動,動點(diǎn)Q同時從點(diǎn)C出發(fā)以同樣的速度沿BC的延長線方向勻速運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,點(diǎn)P、Q同時停止運(yùn)動.設(shè)運(yùn)動時間為t(s),過點(diǎn)P作PE⊥AC于E,PQ交AC邊于D,線段BC的中點(diǎn)為M,連接PM.
(1)當(dāng)t為何值時,△CDQ與△MPQ相似;
(2)在點(diǎn)P、Q運(yùn)動過程中,點(diǎn)D、E也隨之運(yùn)動,線段DE的長度是否會發(fā)生變化?若發(fā)生變化,請說明理由,若不發(fā)生變化,求DE的長;
(3)如圖2,將△BPM沿直線PM翻折,得△B'PM,連接AB',當(dāng)t為何值時,AB'的值最?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,點(diǎn)、分別在邊、上,,連結(jié),點(diǎn)、、分別為、、的中點(diǎn).
(1)觀察猜想圖1中,線段與的數(shù)量關(guān)系是_______,位置關(guān)系是_______;
(2)探究證明把繞點(diǎn)逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)、、,判斷的形狀,并說明理由;
(3)拓展延伸把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B,M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,cosC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn),分別在,上,且,以為圓心,長為半徑作圓,經(jīng)過點(diǎn),與,分別交于點(diǎn),.
(1)求證:是的切線;
(2)若,,求的半徑;
(3)在(2)的條件下,若的內(nèi)切圓圓心為,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)是以為直徑的半圓上任意一點(diǎn)(不與點(diǎn)重合),連接并延長至點(diǎn)使連接交半圓于點(diǎn)過點(diǎn)作于點(diǎn).
求證:.
如圖2,連接.
①當(dāng) 時,四邊形是菱形;
②當(dāng) 時,四邊形是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com