【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)FDE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

①只要證明ADE為等腰直角三角形即可

②只要證明AEF≌△CBF(SAS)即可;

③假設(shè)BF2=FGFC,則FBG∽△FCB,推出∠FBG=FCB=45°,由∠ACF=45°,推出∠ACB=90°,顯然不可能,故③錯(cuò)誤,

④由ADF∽△GBF,可得,由EGCD,推出,推出,由AD=AE,EGAE=BGAB,故④正確,

DE平分∠ADC,ADC為直角,

∴∠ADE=×90°=45°,

∴△ADE為等腰直角三角形,

AD=AE,

又∵四邊形ABCD矩形,

AD=BC,

AE=BC

②∵∠BFE=90°BFE=AED=45°,

∴△BFE為等腰直角三角形,

∴則有EF=BF

又∵∠AEF=DFB+ABF=135°,CBF=ABC+ABF=135°,

∴∠AEF=CBF

AEFCBF中,AE=BC,AEF=CBF,EF=BF,

∴△AEF≌△CBF(SAS)

AF=CF

③假設(shè)BF2=FGFC,則FBG∽△FCB,

∴∠FBG=FCB=45°,

∵∠ACF=45°

∴∠ACB=90°,顯然不可能,故③錯(cuò)誤,

④∵∠BGF=180°-CGB,DAF=90°+EAF=90°+(90°-AGF)=180°-AGF,AGF=BGC,

∴∠DAF=BGF,∵∠ADF=FBG=45°,

∴△ADF∽△GBF,

,

EGCD,

,

,AD=AE,

EGAE=BGAB,故④正確,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=30°,P是OA上的一點(diǎn),OP=24cm,以r為半徑作⊙P.

(1)若r=12cm,試判斷⊙P與OB位置關(guān)系;

(2)若⊙P與OB相離,試求出r需滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:有一個(gè)直角三角形ABC,∠C=90°,AC=10,BC=5,一條線段PQAB,P、Q兩點(diǎn)分別在AC和過點(diǎn)A且垂直于AC的射線AX上運(yùn)動(dòng),問P點(diǎn)運(yùn)動(dòng)到離A的距離等于___________時(shí),ΔABC和ΔPQA全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

問題情境:在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問題:如圖1,在矩形ABCD中,AD=2AB,EAB延長(zhǎng)線上一點(diǎn),且BE=AB,連接DE,交BC于點(diǎn)M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AMDE的位置關(guān)系.

探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:

證明:∵BE=AB,∴AE=2AB.

∵AD=2AB,∴AD=AE.

四邊形ABCD是矩形,∴AD∥BC.

.(依據(jù)1)

∵BE=AB,∴.∴EM=DM.

AM△ADEDE邊上的中線,

∵AD=AE,∴AM⊥DE.(依據(jù)2)

∴AM垂直平分DE.

反思交流:

(1)①上述證明過程中的依據(jù)1”“依據(jù)2”分別是指什么?

試判斷圖1中的點(diǎn)A是否在線段GF的垂直平分線上,請(qǐng)直接回答,不必證明;

(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進(jìn)行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點(diǎn)G在線段BC的垂直平分線上,請(qǐng)你給出證明;

探索發(fā)現(xiàn):

(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點(diǎn)C,點(diǎn)B都在線段AE的垂直平分線上,除此之外,請(qǐng)觀察矩形ABCD和正方形CEFG的頂點(diǎn)與邊,你還能發(fā)現(xiàn)哪個(gè)頂點(diǎn)在哪條邊的垂直平分線上,請(qǐng)寫出一個(gè)你發(fā)現(xiàn)的結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為2的正△ABC的邊BC在直線l上,兩條距離為l的平行直線ab垂直于直線l,ab同時(shí)向右移動(dòng)(a的起始位置在B點(diǎn)),速度均為每秒1個(gè)單位,運(yùn)動(dòng)時(shí)間為t(秒),直到b到達(dá)C點(diǎn)停止,在ab向右移動(dòng)的過程中,記△ABC夾在ab之間的部分的面積為s,則s關(guān)于t的函數(shù)圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若ABC內(nèi)一點(diǎn)P滿足∠PAC=PCB=PBA,則稱點(diǎn)PABC的布羅卡爾點(diǎn),三角形的布羅卡爾點(diǎn)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克雷爾首次發(fā)現(xiàn),后來被數(shù)學(xué)愛好者法國(guó)軍官布羅卡爾重新發(fā)現(xiàn),并用他的名字命名,布羅卡爾點(diǎn)的再次發(fā)現(xiàn),引發(fā)了研究三角形幾何的熱潮.已知ABC中,CA=CB,∠ACB=120°,PABC的布羅卡爾點(diǎn),若PA=,則PB+PC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形ABCD在平面直角坐標(biāo)系中,點(diǎn)A1,8),B16),C76),點(diǎn)X,Y分別在xy軸上.

1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo) ;

2)連接OB、OD,ODBC于點(diǎn)E,∠BOY的平分線和∠BEO的平分線交于點(diǎn)F,若∠BOEn,求∠OFE的度數(shù).

3)若長(zhǎng)方形ABCD以每秒個(gè)單位的速度向下運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,問在第一象限內(nèi)是否存在某一時(shí)刻t,使△OBD的面積等于長(zhǎng)方形ABCD的面積的?若存在,請(qǐng)求出t的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC、∠ACB的角平分線交于點(diǎn)O,MN過點(diǎn)O,且MNBC,分別交AB、AC于點(diǎn)MN.若BM3cm,CN2cm,則MN_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】D為等邊ABC的邊AC上一點(diǎn),E為直線AB上一點(diǎn),CDBE

1)如圖1,求證:ADDE;

2)如圖2,DECB于點(diǎn)F

①若DEAC,CF6,求BF的長(zhǎng);

②求證:DFEF

查看答案和解析>>

同步練習(xí)冊(cè)答案