【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB1.5米,求拉線CE的長(結(jié)果保留根號).

【答案】CE的長為(4+)米

【解析】

試題由題意可先過點AAH⊥CDH.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.

試題解析:過點AAH⊥CD,垂足為H,

由題意可知四邊形ABDH為矩形,∠CAH=30°,

∴AB=DH=1.5,BD=AH=6,

Rt△ACH中,tan∠CAH=,

∴CH=AHtan∠CAH,

∴CH=AHtan∠CAH=6tan30°=6×=2(米),

∵DH=1.5,

∴CD=2+1.5

Rt△CDE中,

∵∠CED=60°,sin∠CED=,

∴CE==4+)(米),

答:拉線CE的長為(4+)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,.動點,分別從點同時開始移動,點的速度為秒,點的速度為秒,點移動到點后停止,點也隨之停止運動.下列時間瞬間中,能使的面積為的是(

A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,連接BM,CD.且B,M,D三點共線

(1)當(dāng)點D,點M在BC邊下方,CDBD時,如圖,求證:BM+CD=AM;(提示:延長DB到點N,使MN=MD,連接AN.)

(2)當(dāng)點D在AC邊右側(cè),點M在ABC內(nèi)部時,如圖;當(dāng)點D在AB邊左側(cè),點M在ABC外部時,如圖,請直接寫出線段BM,CD,AM之間的數(shù)量關(guān)系,不需要證明;

(3)在(1),(2)條件下,點E是AB中點,MF是AMD的角平分線,連接EF,若EF=2MF=6,則CD=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標(biāo)分別是(-5,5)(-2,3)

1)請在圖中的網(wǎng)格平面內(nèi)畫出平面直角坐標(biāo)系xOy;

2)請畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出頂點A1,B1C1的坐標(biāo)

3)請在x軸上求作一點P,使PB1C的周長最小.請標(biāo)出點P的位置(保留作圖痕跡,不需說明作圖方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有10名工作人員他們的月工資情況如表(其中x為未知數(shù)),他們的月平均工資是2.3萬元,根據(jù)表中信息計算該公司工作人員的月工資的中位數(shù)和眾數(shù)分別是(  )

職位

經(jīng)理

副經(jīng)理

A職員

B職員

C職員

人數(shù)

1

2

2

4

1

月工資(萬元/人)

5

3

2

x

0.8

A. 2,4 B. 1.9,1.8 C. 2,1.8 D. 1.8,1.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GMx軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點T,使TAC是等腰三角形?若存在,請求出所有點T的坐標(biāo);若不存在,請說明理由;

(3)點P為拋物線y1上一動點,過點Py軸的平行線交拋物線y2于點Q,點Q關(guān)于直線l的對稱點為R,若以P,Q,R為頂點的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC=90°,AC=25cm,BC=15cm

(1)設(shè)點P在AB上,若∠PAC =∠PCA.求AP的長;

(2)設(shè)點M在AC上.若△MBC為等腰三角形,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,AB=AC=1,點DBC上一個動點(不與B、C重合),在AC上取E點,使∠ADE=45°.

(1)試判斷ABDDCE是否相似并說明理由;

(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;并指出當(dāng)點DBC上運動(不與B、C重合)時,AE是否存在最小值?若存在,求出最小值;若不存在,說明理由;

(3)當(dāng)ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB90°,ACBC,直線MN經(jīng)過點C,且ADMN于點DBEMN于點E

1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:①△ADC≌△CEB;②DEAD+BE

2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,試問DE、ADBE具有怎樣的等量關(guān)系,并加以證明;

3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問DE、ADBE具有怎樣的等量關(guān)系?(請直接寫出這個等量關(guān)系,不需要證明).

查看答案和解析>>

同步練習(xí)冊答案