【題目】如圖,在中,、分別垂直平分,交,兩點,相交于點

1)若的周長為,求的長;

2)若,求的度數(shù).

【答案】115cm;(220°.

【解析】

1)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AMCM,BNCN,然后求出△CMN的周長=AB;
2)根據(jù)三角形的內(nèi)角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根據(jù)等邊對等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的內(nèi)角和定理列式計算即可得解.

解:(1)∵DMEN分別垂直平分ACBC,
AMCM,BNCN
∴△CMN的周長=CMMNCNAMMNBNAB,
∵△CMN的周長為15cm,
AB15cm
2)∵∠MFN80°,
∴∠MNF+∠NMF180°80°100°,
∵∠AMD=∠NMF,∠BNE=∠MNF
∴∠AMD+∠BNE=∠MNF+∠NMF100°,
∴∠A+∠B90°AMD90°BNE180°100°80°
AMCM,BNCN,
∴∠A=∠ACM,∠B=∠BCN,
∴∠MCN180°2(∠A+∠B)=180°2×80°20°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.

(1)求直線的解析式;

(2)將以每秒1個單位的速度沿軸向左平移,當第一次與外切時,求平移的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B,F,C,E在直線lF,C之間不能直接測量,點A,Dl異側(cè),測得AB=DE,AC=DFBF=EC.

1求證:ABC≌△DEF

2指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一直徑是米的圓形鐵皮,現(xiàn)從中剪出一個圓周角是90°的最大扇形ABC,則:

(1)AB的長為多少米?

(2)用該扇形鐵皮圍成一個圓錐,所得圓錐的底面半徑為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一個幾何體的三視圖.

(1)寫出這個幾何體的名稱;

(2)根據(jù)圖中數(shù)據(jù)計算這個幾何體的表面積;

(3)如果一只螞蟻要從這個幾何體上的點B出發(fā),沿表面爬到AC的中點D,請你求出這條路線的最短路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)閱讀材料,回答問題.

材料:如圖所示,有公共端點(O)的兩條射線組成的圖形叫做角(.如果一條射線()把一個角()分成兩個相等的角(),這條射線()叫做這個角的平分線.這時,(或.

問題:平面內(nèi)一定點A在直線的上方,點O為直線上一動點,作射線,,,當點O在直線上運動時,始終保持,,將射線繞點O順時針旋轉(zhuǎn)60°得到射線.

1)如圖1,當點O運動到使點A在射線的左側(cè)時,若平分,求的度數(shù);

2)當點O運動到使點A在射線的左側(cè),時,求的值;

3)當點O運動到某一時刻時,,直接寫出此時的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,點D,E分別在AC,BC上,且CDE=B,將CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中有一個黑球兩個白球(除顏色外其他均相同).用狀圖(或列表法)解答下列問題:

(1)小麗第一次從袋子中摸出一個球不放回,第二次又從袋子中摸出一個球,則小麗兩次都摸到白球的概率是多少?

(2)小強第一次從袋子中摸出一個球,摸到黑球不放回,摸到白球放回;第二次又從袋子中摸出一個球,則小強兩次都摸到白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由點BC點運動,同時,點Q在線段CA上由點CA點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由.

2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPDCQP全等?

查看答案和解析>>

同步練習冊答案