【題目】已知拋物線G:y=x2-2mx與直線l:y=3x+b相交于A,B兩點(diǎn)(點(diǎn)A的橫坐標(biāo)小于點(diǎn)B的橫坐標(biāo))
(1)求拋物線y=x2-2mx頂點(diǎn)的坐標(biāo)(用含m的式子表示);
(2)已知點(diǎn)C(-2,1),若直線l經(jīng)過拋物線G的頂點(diǎn),求△ABC面積的最小值;
(3)若平移直線l,可以使A,B兩點(diǎn)都落在x軸的下方,求實(shí)數(shù)m的取值范圍.
【答案】(1);(2);(3)m>3或m<-3
【解析】
(1)將拋物線解析式化為頂點(diǎn)式即可求解;
(2)根據(jù)直線過拋物線頂點(diǎn),可以將頂點(diǎn)坐標(biāo)代入解析式求出b,之后聯(lián)立方程求出A、B兩點(diǎn)的坐標(biāo);過C點(diǎn)做CD∥y軸交直線于D,可以發(fā)現(xiàn)C在D的上方,并且不論CD在A、B左側(cè)、中間還是右側(cè),面積的求法是一致的,即可求出面積的代數(shù)式,求出其最值即可;
(3)由(2)知B在A上方9個(gè)單位,所以只需要保證yB<0就可以了,求解不等式即可.
解:(1)∵y=x2-2mx=,
∴頂點(diǎn)為;
(2)∵直線過拋物線頂點(diǎn),
∴,
即,
故一次函數(shù)解析式為,
聯(lián)立方程,
解得,
∵點(diǎn)A的橫坐標(biāo)小于點(diǎn)B的橫坐標(biāo),
∴將x代入解析式可求得,
∵C(-2,1),
∴過C點(diǎn)做CD∥y軸交直線于D,
則,
∵,
∴,
,
∴△ABC面積的最小值為;
(3)由(2)可知,
故使A,B兩點(diǎn)都落在x軸的下方只需滿足,
解得m>3或m<-3,
∴實(shí)數(shù)m的取值范圍為m>3或m<-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)疫情期間的垃圾分類,樹立全面環(huán)保意識(shí),某校舉行了“垃圾分類,綠色環(huán)!敝R(shí)競(jìng)賽活動(dòng),根據(jù)學(xué)生的成績劃分為,,,四個(gè)等級(jí),并繪制了不完整的兩種統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,回答下列問題:
(1)參加知識(shí)競(jìng)賽的學(xué)生共有______人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中,______,______,等級(jí)對(duì)應(yīng)的圓心角為______度;
(3)小明是四名獲等級(jí)的學(xué)生中的一位,學(xué)校將從獲等級(jí)的學(xué)生中任選取2人,參加市舉辦的知識(shí)競(jìng)賽,請(qǐng)用列表法或畫樹狀圖,求小明被選中參加區(qū)知識(shí)競(jìng)賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對(duì)教材“課題學(xué)習(xí)”中的“用一張正方形折出一個(gè)正八邊形”的問題進(jìn)行了認(rèn)真地探索.他先把正方形沿對(duì)角線對(duì)折,再把對(duì)折,使點(diǎn)落在上,記為點(diǎn).然后沿的中垂線折疊,得到折痕,如圖1,類似地,折出其余三條折痕,得到八邊形,如圖2.
(1)求證:是等腰直角三角形.
(2)若,求的長.(用含的代數(shù)式表示)
(3)我們把八條邊長相等,八個(gè)內(nèi)角都相等的八邊形叫做正八邊形,試說明八邊形是正八邊形,請(qǐng)把過程補(bǔ)充完整.
解:理由如下:
①
同理可得:
②
同理可得:
∴八邊形是正八邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AD邊上一點(diǎn),AE:ED=1:2,連接AC、BE交于點(diǎn)F.若S△AEF=1,則S四邊形CDEF=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為正方形,∠CAB的角平分線交BC于點(diǎn)E,過點(diǎn)C作CF⊥AE交AE的延長線于點(diǎn)G,CF與AB的延長線交于點(diǎn)F,連接BG、DG、與AC相交于點(diǎn)H,則下列結(jié)論:①ABECBF;②GF=CG;③BG⊥DG;④,其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線與直線相交于,點(diǎn)P是x軸上一動(dòng)點(diǎn).
(1)求雙曲線與直線的解析式;
(2)當(dāng)時(shí),直接寫出x的取值范圍;
(3)當(dāng)是等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD//CO.
(1)求證:△ADB∽△OBC;
(2)若AB=2,BC=,求AD的長.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作發(fā)現(xiàn):如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個(gè)三角形放置在一起,使點(diǎn)B,D,E在同一直線上,連接CE.
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數(shù);
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請(qǐng)直接寫出EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)當(dāng)天,小明帶了四個(gè)粽子(除味道不同外,其它均相同),其中兩個(gè)是大棗味的,另外兩個(gè)是火腿味的,準(zhǔn)備按數(shù)量平均分給小紅和小剛兩個(gè)好朋友.
(1)請(qǐng)你用樹狀圖或列表的方法表示小紅拿到的兩個(gè)粽子的所有可能性;
(2)請(qǐng)你計(jì)算小紅拿到的兩個(gè)粽子剛好是同一味道的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com