如圖,已知二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A(-2,-1),B(0,7)兩點.
(1)求該拋物線的解析式及對稱軸;
(2)當x為何值時,y>0?
(3)在x軸上方作平行于x軸的直線l,與拋物線交于C,D兩點(點C在對稱軸的左側(cè)),過點C,D作x軸的垂線,垂足分別為F,E.當矩形CDEF為正方形時,求C點的坐標.

【答案】分析:(1)根據(jù)待定系數(shù)法求二次函數(shù)解析式,再用配方法或公式法求出對稱軸即可;
(2)求出二次函數(shù)與x軸交點坐標即可,再利用函數(shù)圖象得出x取值范圍;
(3)利用正方形的性質(zhì)得出橫縱坐標之間的關系即可得出答案.
解答:解:(1)∵二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A(-2,-1),B(0,7)兩點.
,
解得:,
∴y=-x2+2x+7,
=-(x2-2x)+7,
=-[(x2-2x+1)-1]+7,
=-(x-1)2+8,
∴對稱軸為:直線x=1.

(2)當y=0,
0=-(x-1)2+8,
∴x-1=±2,
x1=1+2,x2=1-2,
∴拋物線與x軸交點坐標為:(1-2,0),(1+2,0),
∴當1-2<x<1+2時,y>0;

(3)當矩形CDEF為正方形時,
假設C點坐標為(x,-x2+2x+7),
∴D點坐標為(-x2+2x+7+x,-x2+2x+7),
即:(-x2+3x+7,-x2+2x+7),
∵對稱軸為:直線x=1,D到對稱軸距離等于C到對稱軸距離相等,
∴-x2+3x+7-1=-x+1,
解得:x1=-1,x2=5(不合題意舍去),
x=-1時,-x2+2x+7=4,
∴C點坐標為:(-1,4).
點評:此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及利用圖象觀察函數(shù)值和正方形性質(zhì)等知識,根據(jù)題意得出C、D兩點坐標之間的關系是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
5
2
,
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關系式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案