【題目】已知函數(shù)f(x)=ex﹣asinx﹣1,a∈R.
(1)若a=1,求f(x)在x=0處的切線方程;
(2)若f(x)≥0在區(qū)間[0,1)恒成立,求a的取值范圍.

【答案】
(1)解: a=1時(shí),f(x)=ex﹣sinx﹣1,f′(x)=ex﹣cosx,

∴f′(0)=e0﹣cos0=0,且f(0)=e0﹣sin0﹣1=0,

∴f(x)在x=0處的切線方程為:y=0


(2)f(x)≥0在區(qū)間[0,1)恒成立asinx≤ex﹣1在區(qū)間[0,1)恒成立.

①當(dāng)x=0時(shí),a∈R,

②當(dāng)x∈(0,1)時(shí),原不等式等價(jià)于a ,

令h(x)= ,x∈(0,1)

h′(x)= ,

令G(x)=exsinx﹣excosx+cosx,(x∈(0,1))

G′(x)=(2ex﹣1)sinx≥0,在x∈(0,1)恒成立.

∴G(x)=exsinx﹣excosx+cosx,(x∈(0,1))單調(diào)遞增,而G(0)=0.

故G(x)≥0在(0,1)上恒成立,∴h′(x)≥在(0,1)上恒成立.

h(x)在(0,1)上遞增,

x→0時(shí),sinx→0,ex﹣1→0,

由洛必達(dá)法則得 = =

即a≤1,

綜上,a的取值范圍為(﹣∞,1]


【解析】(1)利用導(dǎo)數(shù)的幾何意義,求出切線的斜率、切點(diǎn),由點(diǎn)斜式寫(xiě)出方程.(2)f(x)≥0在區(qū)間[0,1)恒成立asinx≤ex﹣1在區(qū)間[0,1)恒成立.①當(dāng)x=0時(shí),a∈R,②當(dāng)x∈(0,1)時(shí),原不等式等價(jià)于a , 令h(x)= ,x∈(0,1),利用導(dǎo)數(shù)求出h(x)在(0,1)上遞增,由洛必達(dá)法則得 = = ,即可求得a的取值范圍
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB≠AC.D、E分別為邊AB、AC上的點(diǎn).AC=3AD,AB=3AE,點(diǎn)F為BC邊上一點(diǎn),添加一個(gè)條件: , 可以使得△FDB與△ADE相似.(只需寫(xiě)出一個(gè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=38°,在OB上有一點(diǎn)E , 從E點(diǎn)射出一束光線經(jīng)OA上一點(diǎn)D反射,反射光線DC恰好與OB平行,則∠DEB的度數(shù)是( )

A.76°
B.52°
C.45°
D.38°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時(shí)間銷售一種成本為10元/件的商品售后,經(jīng)過(guò)統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價(jià)m(元/件)

當(dāng)1≤x≤20時(shí),

當(dāng)21≤x≤30時(shí),


(1)請(qǐng)計(jì)算第15天該商品單價(jià)為多少元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知P是拋物線y2=4x上的動(dòng)點(diǎn),Q在圓C:(x+3)2+(y﹣3)2=1上,R是P在y軸上的射影,則|PQ|+|PR|的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點(diǎn),則在△ADE翻轉(zhuǎn)過(guò)程中,下列說(shuō)法錯(cuò)誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個(gè)位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長(zhǎng)之比為定值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a(a∈R)與函數(shù) 有公共切線. (Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2﹣a對(duì)于x>0的一切值恒成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點(diǎn),面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD= ,DC=SD=2,點(diǎn)M在側(cè)棱SC上,∠ABM=60°.
(Ⅰ)證明:M是側(cè)棱SC的中點(diǎn);
(Ⅱ)求二面角S﹣AM﹣B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案