作业宝如圖,把△ABC放置在網(wǎng)格中點(diǎn)A的坐標(biāo)為(-3,1),現(xiàn)將△ABC先向右平移4個(gè)單位,再向上平移2個(gè)單位后得到△A′B′C′,則點(diǎn)A′的坐標(biāo)是________.

(1,3)
分析:根據(jù)點(diǎn)的平移規(guī)律:左減右加,上加下減可得點(diǎn)的坐標(biāo).
解答:∵點(diǎn)A的坐標(biāo)為(-3,1),
∴先向右平移4個(gè)單位,再向上平移2個(gè)單位后得到點(diǎn)A′的坐標(biāo)是(-3+4,1+2),即(1,3),
故答案為:(1,3).
點(diǎn)評(píng):此題主要考查了點(diǎn)的坐標(biāo)的平移規(guī)律,關(guān)鍵是掌握橫坐標(biāo),右移加,左移減;縱坐標(biāo),上移加,下移減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•本溪一模)如圖,把△ABC放置在網(wǎng)格中點(diǎn)A的坐標(biāo)為(-3,1),現(xiàn)將△ABC先向右平移4個(gè)單位,再向上平移2個(gè)單位后得到△A′B′C′,則點(diǎn)A′的坐標(biāo)是
(1,3)
(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•麗水)在△ABC中,∠ABC=45°,tan∠ACB=
3
5
.如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC=
10
3
34
,AC與y軸交于點(diǎn)E.

(1)求AC所在直線的函數(shù)解析式;
(2)過(guò)點(diǎn)O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點(diǎn)F(10,0),在△ABC的邊上取兩點(diǎn)P,Q,是否存在以O(shè),P,Q為頂點(diǎn)的三角形與△OFP全等,且這兩個(gè)三角形在OP的異側(cè)?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省中考真題 題型:解答題

在△ABC中,∠ABC=45 °,tan∠ACB=.如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC=,AC與y軸交于點(diǎn)E.
(1)求AC所在直線的函數(shù)解析式;
(2)過(guò)點(diǎn)O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點(diǎn)F(10,0),在△ABC的邊上取兩點(diǎn)P,Q,是否存在以O(shè),P,Q為頂點(diǎn)的三角形與△OFP全等,且這兩個(gè)三角形在OP的異側(cè)?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年浙江省麗水、金華市中考數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,∠ABC=45°,tan∠ACB=.如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC=,AC與y軸交于點(diǎn)E.

(1)求AC所在直線的函數(shù)解析式;
(2)過(guò)點(diǎn)O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點(diǎn)F(10,0),在△ABC的邊上取兩點(diǎn)P,Q,是否存在以O(shè),P,Q為頂點(diǎn)的三角形與△OFP全等,且這兩個(gè)三角形在OP的異側(cè)?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案