【題目】如圖,在△ABC中,AB=AC,AD平分∠BACCE∥ADCE=AD.

1)求證:四邊形ADCE是矩形;

2)若△ABC是邊長為的等邊三角形,AC,DE相交于點O,在CE上截取CF=CO,連接OF,求線段FC的長及四邊形AOFE的面積.

【答案】1)證明見解析;(2.

【解析】

試題(1)根據(jù)平行四邊形判定得出平行四邊形,再根據(jù)矩形判定推出即可.

2)分別求出AE、OH、CE、CF的長,再求出三角形AEC和三角形COF的面積,即可求出答案.

試題解析:(1∵CE∥ADCE=AD,四邊形ADCE是平行四邊形.

∵AD⊥BC∴∠ADC=90°.

四邊形ADCE是矩形.

2∵△ABC是等邊三角形,邊長為4∴AC=4,∠DAC=30°.

∴∠ACE=30°,AE=2,CE=.

四邊形ADCE為矩形,∴OC=OA=2.

∵CF=CO,∴CF=2.

如圖,過OOH⊥CEH

∴OE=OC=1.

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣2,0),點B的坐標為(0,n),以點B為直角頂點,點C在第二象限內(nèi),作等腰直角ABC

1)點C的坐標為 (用字母n表示)

2)如果ABC的面積為5.5,求n的值;

3)在(2)的條件下,坐標平面內(nèi)是否存在一點M,使以點M、A、B為頂點組成的三角形與ABC全等?如果存在畫出符合要求的圖形,求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.

A,B兩種型號車的進貨和銷售價格如下表:

A型車

B型車

進貨價格(元)

1 100

1 400

銷售價格(元)

今年的銷售價格

2 000

(1)今年A型車每輛售價多少元?(用列方程的方法解答)

(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進貨才能使這批車獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.

(1)求證:四邊形ABFE是平行四邊形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.

請根據(jù)圖表信息回答下列問題:

視力

頻數(shù)(人)

頻率

4.0≤x<4.3

20

0.1

4.3≤x<4.6

40

0.2

4.6≤x<4.9

70

0.35

4.9≤x<5.2

a

0.3

5.2≤x<5.5

10

b

(1)本次調(diào)查的樣本為________,樣本容量為_______

(2)在頻數(shù)分布表中,a=______,b=______,并將頻數(shù)分布直方圖補充完整;

(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某區(qū)初二年級數(shù)學學科期末質(zhì)量監(jiān)控情況,進行了抽樣調(diào)查,過程如下,請將有關(guān)問題補充完整.

收集數(shù)據(jù):隨機抽取甲乙兩所學校的20名學生的數(shù)學成績進行分析:

91

89

77

86

71

31

97

93

72

91

81

92

85

85

95

88

88

90

44

91

84

93

66

69

76

87

77

82

85

88

90

88

67

88

91

96

68

97

59

88

整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)

分段

學校

30≤x≤39

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

1

1

0

0

3

7

8

   

   

   

   

   

   

   

分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

統(tǒng)計量

學校

平均數(shù)

中位數(shù)

眾數(shù)

方差

81.85

88

91

268.43

81.95

86

m

115.25

經(jīng)統(tǒng)計,表格中m的值是   

得出結(jié)論:

a若甲學校有400名初二學生,估計這次考試成績80分以上人數(shù)為   

b可以推斷出   學校學生的數(shù)學水平較高,理由為   .(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,C=60°,BC=3厘米,AC=4厘米,點P從點B出發(fā),沿BCA以每秒1厘米的速度勻速運動到點A.設(shè)點P的運動時間為xB、P兩點間的距離為y厘米

小新根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究

下面是小新的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x(s)

0

1

2

3

4

5

6

7

y(cm)

0

1.0

2.0

3.0

2.7

2.7

m

3.6

經(jīng)測量m的值是(保留一位小數(shù))

(2)建立平面直角坐標系,描出表格中所有各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

(3)結(jié)合畫出的函數(shù)圖象,解決問題:在曲線部分的最低點時,在△ABC中畫出點P所在的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運動的時間為t秒.

問:(1)動點P從點A運動至C點需要多少時間?

2P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;

3)求當t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O中,AC為直徑,MAMB分別切⊙O于點A、B

(1)如圖①,若∠BAC=23°,求∠AMB的大;

(Ⅱ)如圖②,過點BBDMA,交AC于點E,交⊙O于點D,若BD=MA,求∠AMB的大。

查看答案和解析>>

同步練習冊答案