【題目】 ⑴如圖,在正方形中,點分別在上,于點,求證;
⑵如圖,將⑴中的正方形改為矩形,于點,探究與的數(shù)量關系,并證明你的結論.
【答案】(1)見解析;(2)AB=BC,見解析.
【解析】
試題分析:(1)根據(jù)正方形的性質,可得∠ABC與∠C的關系,AB與BC的關系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關系,可得∠ABM與∠BAM的關系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質,可得答案;
(2)根據(jù)矩形的性質得到∠ABC=∠C,由余角的性質得到∠BAM=∠CBF,根據(jù)相似三角形的性質即可得到結論.
試題解析(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.
∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.
在△ABE和△BCF中,,
∴△ABE≌△BCF(ASA),∴AE=BF;
(2)解:AB=BC,
理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,
∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,
∴,∴AB=BC.
科目:初中數(shù)學 來源: 題型:
【題目】兩條平行線被第三條直線所截,一對同旁內角的比為2:7,則這兩個角中較大的角的度數(shù)為( )
A.40°B.70°C.100°D.140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各組中,不能構成直角三角形的是( ).
A. 9,12,15 B. 15,32,39 C. 16,30,32 D. 9,40,41
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學女子足球隊15名隊員的年齡情況如下表:
年齡(歲) | 13 | 14 | 15 | 16 |
隊員(人) | 2 | 3 | 6 | 4 |
這支球隊隊員的年齡的眾數(shù)和中位數(shù)分別是( 。
A.14,15
B.14,14.5
C.15,15
D.15,14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班為滿足同學們課外活動的需求,要求購排球和足球若干個.已知足球的單價比排球的單價多元,用元購得的排球數(shù)量與用元購得的足球數(shù)量相等.
⑴排球和足球的單價各是多少元?
⑵若恰好用去元,有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 九⑴班名學生參加學校舉行的“珍惜生命,遠離毒品”只是競賽初賽,賽后,班長對成績進行分析,制作如下的頻數(shù)分布表和頻數(shù)分布直方圖(未完成).余下名學生成績尚未統(tǒng)計,這名學生成績如下:.
頻數(shù)分布表
分數(shù)段 | 頻數(shù)(人數(shù)) |
請解答下列問題:
⑴完成頻數(shù)分布表, , .
⑵補全頻數(shù)分布直方圖;
⑶全校共有名學生參加初賽,估計該校成績范圍內的學生有多少人?
⑷九⑴班甲、乙、丙三位同學的成績并列第一,現(xiàn)選兩人參加決賽,求恰好選中甲、乙兩位同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)
在四邊形ABCD中,對角線AC、BD交于點O.若四邊形ABCD是正方形如圖1:則有AC=BD,AC⊥BD.
旋轉圖1中的Rt△COD到圖2所示的位置,AC’與BD’有什么關系?(直接寫出)
若四邊形ABCD是菱形,∠ABC=60°,旋轉Rt△COD至圖3所示的位置,AC’與BD’又有什么關系?寫出結論并證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com