【題目】正方形按如圖所示的方式放置,點(diǎn).. 分別在直線x軸上,已知點(diǎn),則Bn的坐標(biāo)是____________

【答案】2n-1,2n-1

【解析】

首先由B1的坐標(biāo)為(1,1),點(diǎn)B2的坐標(biāo)為(3,2),可得正方形A1B1C1O1邊長為1,正方形A2B2C2C1邊長為2,即可求得A1的坐標(biāo)是(0,1),A2的坐標(biāo)是:(12),然后由待定系數(shù)法求得直線A1A2的解析式,由解析式即可求得點(diǎn)A3的坐標(biāo),繼而可得點(diǎn)B3的坐標(biāo),觀察可得規(guī)律Bn的坐標(biāo)是(2n-12n-1).

解:∵B1的坐標(biāo)為(1,1),點(diǎn)B2的坐標(biāo)為(3,2),

正方形A1B1C1O1邊長為1,正方形A2B2C2C1邊長為2,

∴A1的坐標(biāo)是(0,1),A2的坐標(biāo)是:(1,2),

解得:,

直線A1A2的解析式是:y=x+1

點(diǎn)B2的坐標(biāo)為(3,2),

點(diǎn)A3的坐標(biāo)為(3,4),

點(diǎn)B3的坐標(biāo)為(74),

∴Bn的橫坐標(biāo)是:2n-1,縱坐標(biāo)是:2n-1

∴Bn的坐標(biāo)是(2n-1,2n-1).

故答案為: 2n-12n-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,點(diǎn)、邊上的兩點(diǎn),且,過,分別交、,、的延長線相交于.

1)求證:;

2)判斷的形狀,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線過原點(diǎn)O,點(diǎn)A(10,0)和點(diǎn)B(2,2),在線段OA上,點(diǎn)P從點(diǎn)O向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A向點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)過程中保持AQ=2OP,當(dāng)P、Q重合時(shí)同時(shí)停止運(yùn)動(dòng),過點(diǎn)Qx軸的垂線,交直線AB于點(diǎn)M,延長QM到點(diǎn)D,使MD=MQ,以QD為對(duì)角線作正方形QCDE(正方形QCDE隨點(diǎn)Q運(yùn)動(dòng)).

(1)求這條拋物線的函數(shù)表達(dá)式;

(2)設(shè)正方形QCDE的面積為S,P點(diǎn)坐標(biāo)(m,0)求Sm之間的函數(shù)關(guān)系式;

(3)過點(diǎn)Px軸的垂線,交拋物線于點(diǎn)N,延長PN到點(diǎn)G,使NG=PN,以PG為對(duì)角線作正方形PFGH(正方形PFGH隨點(diǎn)P運(yùn)動(dòng)),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(2,0)時(shí),如圖2,正方形PFGH的邊GF和正方形QCDE的邊EQ落在同一條直線上.

①則此時(shí)兩個(gè)正方形中在直線AB下方的陰影部分面積的和是多少?

②若點(diǎn)P繼續(xù)向點(diǎn)A運(yùn)動(dòng),還存在兩個(gè)正方形分別有邊落在同一條直線上的情況,請(qǐng)直接寫出每種情況下點(diǎn)P的坐標(biāo),不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷△ABC是直角三角形的是( 。

A. abc345 B. A:∠B:∠C345

C. A+B=∠C D. abc12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)500名員工參加安全生產(chǎn)知識(shí)測(cè)試,成績記為A,B,C,D,E5個(gè)等級(jí),為了解本次測(cè)試的成績(等級(jí))情況,現(xiàn)從中隨機(jī)抽取部分員工的成績(等級(jí)),統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

1)求這次抽樣調(diào)查的樣本容量,并補(bǔ)全圖;

2)如果測(cè)試成績(等級(jí))為A,B,C級(jí)的定為優(yōu)秀,請(qǐng)估計(jì)該企業(yè)參加本次安全生產(chǎn)知識(shí)測(cè)試成績(等級(jí))達(dá)到優(yōu)秀的員工的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前使用節(jié)能燈照明已經(jīng)基本普及,某商場(chǎng)計(jì)劃購進(jìn)甲,乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如表:

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

甲型

25

30

乙型

45

60

1)若商場(chǎng)某一天銷售節(jié)能燈中,銷售甲型的只數(shù)是乙型的只數(shù)的3倍,銷售所收的款是9000元,問這天銷售節(jié)能燈為多少只?

2)若商場(chǎng)購進(jìn)節(jié)能燈的貨款為38000元時(shí),商場(chǎng)銷售完節(jié)能燈所得利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的口袋中裝有大小、形狀完全相同的2個(gè)白球 ,a個(gè)紅球

(1)若從中任意摸出1個(gè)球,是白球的概率為,則a_____

(2)在(1)的條件下,從中任意摸出2個(gè)球 ,求兩個(gè)球的顏色相同的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇科版九年級(jí)下冊(cè)數(shù)學(xué)課本91頁有這樣一道習(xí)題:

(1)復(fù)習(xí)時(shí),小明與小亮、數(shù)學(xué)老師交流了自己的兩個(gè)見解,并得到了老師的認(rèn)可:

①可以假定正方形的邊長AB=4a,則AEDE=2a,DFa,利用兩邊分別成比例且夾角相等的兩個(gè)三角形相似可以證明ABEDEF;請(qǐng)結(jié)合提示寫出證明過程

②圖中的相似三角形共三對(duì),而且可以借助于ABEDEF中的比例線段來證明EBF與它們相似證明過程如下:

(2)交流之后,小亮嘗試對(duì)問題進(jìn)行了變化,在老師的幫助下,提出了新的問題,請(qǐng)你解答:

已知:如圖,在矩形ABCD中,EAD的中點(diǎn),EFECABF,連結(jié)FC

ABAE

①求證:AEFECF;

②設(shè)BC=2,ABa,是否存在a值,使得AEFBFC相似.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用尺規(guī)在一個(gè)平行四邊形內(nèi)作菱形ABCD,下列作法中錯(cuò)誤的是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案