【題目】如圖,ABO的直徑,點(diǎn)CO上,ABC的外角平分線BDOD,DEACCB的延長(zhǎng)線于E

1)求證:DEO的切線;

2)若A30°,BD3,BC的長(zhǎng).

【答案】1)見(jiàn)解析;(2BD=3

【解析】

1)如圖(見(jiàn)解析),連接OD,可得,由角平分線定義得,從而得由圓的性質(zhì)可得,結(jié)合可得,則,由圓的切線判定定理即可證;

2)由,,則是等邊三角形,可得,從而,在中即可求出BC的長(zhǎng).

1)連接OD

的外角平分線

(內(nèi)錯(cuò)角相等,兩直線平行)

是⊙O的直徑

(兩直線平行,同旁內(nèi)角互補(bǔ))

(兩直線平行,同旁內(nèi)角互補(bǔ))

,點(diǎn)D在⊙O

DE是⊙O的切線(圓的切線判定定理)

2)在中,,則

是等邊三角形

中可得(直角三角形中,所對(duì)直角邊等于斜邊的一半)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo)據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本

1當(dāng)銷(xiāo)售單價(jià)為70元時(shí),每天的銷(xiāo)售利潤(rùn)是多少?

2求出每天的銷(xiāo)售利潤(rùn)y與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;

3如果該企業(yè)每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?每天的總成本=每件的成本×每天的銷(xiāo)售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于點(diǎn)C,D(如圖).

1)求證:AC=BD;

2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑CD,AB是⊙O的弦,ABCD,垂足為N.連接AC

(1)ON1BN=.求弧BC長(zhǎng)度;

(2)若點(diǎn)EAB上,且AC2AE.AB.求證:∠CEB2CAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊長(zhǎng)與另一邊長(zhǎng)之間的函數(shù)圖像如圖.

1)該綠化帶的面積是多少?寫(xiě)出的函數(shù)解析式.

2)完成下表,并回答問(wèn)題:如果該綠化帶的長(zhǎng)不得超過(guò),那么應(yīng)控制在什么范圍?

10

20

30

40

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)a≠0)的圖象如圖所示,則下列命題中正確的是(  )

A. a bc

B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限

C. mam+b+bam是任意實(shí)數(shù))

D. 3b+2c0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y軸交于A點(diǎn),過(guò)點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過(guò)點(diǎn)BBCx軸,垂足為點(diǎn)C(3,0).

1)求直線AB的函數(shù)關(guān)系式;

2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng),過(guò)點(diǎn)PPNx軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N. 設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長(zhǎng)度為s個(gè)單位,求st的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;

3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問(wèn)對(duì)于所求的t值,平行四邊形BCMN是否菱形?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB8,AC16,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒2個(gè)長(zhǎng)度單位的速度向點(diǎn)B運(yùn)動(dòng):同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒3個(gè)長(zhǎng)度單位的速度向點(diǎn)A運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn),則另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)△ABC與以A、PQ為頂點(diǎn)的三角形相似時(shí),運(yùn)動(dòng)時(shí)間為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是一塊銳角三角形余料,邊毫米,高毫米,要把它加工成一個(gè)矩形零件,使矩形的一邊在上,其余兩個(gè)頂點(diǎn)分別在上,設(shè)該矩形的長(zhǎng)毫米,寬毫米.

1)求證:

2)當(dāng)分別取什么值時(shí),矩形的面積最大?最大面積是多少?

3)當(dāng)矩形的面積最大時(shí),它的長(zhǎng)和寬是關(guān)于的一元二次方程的兩個(gè)根,而,的值又恰好分別是,10,12135個(gè)數(shù)據(jù)的眾數(shù)與平均數(shù),試求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案