【題目】夏季多雨,在山坡CD處出現(xiàn)了滑坡,為了測量山體滑坡的坡面長度CD,探測隊在距離坡底C點米處的E點用熱氣球進行數(shù)據監(jiān)測,當熱氣球垂直升騰到B點時觀察滑坡的終端C點,俯視角為60°,當熱氣球繼續(xù)垂直升騰90米到達A點,此時探測到滑坡的始端D點,俯視角為45°,若滑坡的山體坡角∠DCH為30°,求山體滑坡的坡面長度CD的長.(計算保留根號)
【答案】山體滑坡的坡面長度CD的長為(570﹣810)米.
【解析】
作DG⊥AE于G,DF⊥EH于F,設DF=a米,根據直角三角形的性質用a表示出CF、CD,根據正切的定義求出BE,根據題意列方程,解方程得到答案.
解:作DG⊥AE于G,DF⊥EH于F,
則四邊形GEFD為矩形,
∴GE=DF,GD=EF,
設DF=a米,則GE=a,
在Rt△DCF中,∠DCF=30°,
∴CD=2DF=2a,CF=a,
∴EF=EC+CF=120+a,
∵AM∥GD,
∴∠ADG=∠MAD=45°,
∴AG=DE=EF=120+a,
∵BN∥EF,
∴∠BCE=∠NBC=60°,
在Rt△BEC中,tan∠BCE=,
BE=ECtan60°=120×=360,
AG=AB+BE﹣GE=450﹣a,
∴450﹣a=120+a,
解得,a=285﹣405,
∴CD=2a=570﹣810,
答:山體滑坡的坡面長度CD的長為(570﹣810)米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為( )
A. 6π﹣B. 6π﹣9C. 12π﹣D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展以“學習朱子文化,弘揚理學思想”為主題的讀書月活動,并向學生征集讀后感,學校將收到的讀后感篇數(shù)按年級進行統(tǒng)計,繪制了以下兩幅統(tǒng)計圖(不完整).
據圖中提供的信息完成以下問題
(1)扇形統(tǒng)計圖中“八年級”對應的圓心角是 °,并補全條形統(tǒng)計圖;
(2)經過評審,全校有4篇讀后感榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎讀后感中任選兩篇在校廣播電臺上播出,請利用畫樹狀圖或列表的方法求出七年級特等獎讀后感被校廣播電臺播出的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.某商場為緩解“停車難”問題,擬建造地下停車庫,如圖是該地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根據規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小明認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小明和小亮誰說得對?請你判斷并計算出正確的結果.(結果精確到0.1 m,參考數(shù)據:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC與△DEF均為等邊三角形,且AB=2,DB=1,現(xiàn)△ABC靜止不動,△DEF沿著直線EC以每秒1個單位的速度向右移動設△DEF移動的時間為x,△DEF與△ABC重合的面積為y,則能大致反映y與x函數(shù)關系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的有_____.(填序號)
①的平方根是±3
②絕對值等于它本身的數(shù)一定是正數(shù)
③關于x的一元二次方程(m﹣2)x2+2x+1=0有實數(shù)根,則m的取值范圍是m≤3
④如果一個多邊形的內角和是外角和的3倍,則這個多邊形的邊數(shù)是8
⑤觀察下列單項式2x,﹣4x2,8x3,﹣16x4,…,則第7個單項式是128x7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.
(1)求該型號自行車的進價和標價分別是多少元?
(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產并銷售某種產品,假設銷售量與產量相等,如圖中的折線ABD表示該產品每千克生產成本y1(單位:元)與產量x(單位:kg)之間的函數(shù)關系;線段CD表示每千克的銷售價y2(單位:元)與產量x(單位:kg)之間的函數(shù)關系.
(1)請解釋圖中點D的橫坐標、縱坐標的實際意義.
(2)求線段AB所表示的y1與x之間的函數(shù)表達式.
(3)當0≤x≤90時,銷售該產品獲得的利潤與產量的關系式是 ;當90≤x≤130時,銷售該產品獲得的利潤與產量的關系式是 ;總之,當產量為 kg時,獲得的利潤最大,最大利潤是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AB=8,點P在邊CD上,tan∠PBC=,點Q是在射線BP上的一個動點,過點Q作AB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當點R與點D重合時,求PQ的長;
(2)如圖2,試探索: 的比值是否隨點Q的運動而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點Q在線段BP上,設PQ=x,RM=y,求y關于x的函數(shù)關系式,并寫出它的定義域.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com