【題目】在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.現(xiàn)有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿線段CB也向點B方向運動.如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發(fā),當(dāng)有一點到達(dá)所在線段的端點時,就停止運動,設(shè)運動的時間為t秒.
(1)用含t的代數(shù)式表示Rt△CPQ的面積S;
(2)當(dāng)t=3秒時,P、Q兩點之間的距離是多少?
(3)當(dāng)t為多少秒時,以點C、P、Q為頂點的三角形與△ABC相似?
【答案】 ; 秒或秒時,以點、、為頂點的三角形與相似.
【解析】
(1)由點P,點Q的運動速度和運動時間,又知AC,BC的長,可將CP、CQ用含t的表達(dá)式求出,代入直角三角形面積公式S△CPQ=CP×CQ求解;
(2)在Rt△CPQ中,當(dāng)t=3秒,可知CP、CQ的長,運用勾股定理可將PQ的長求出;
(3)應(yīng)分兩種情況:當(dāng)Rt△CPQ∽Rt△CAB時,根據(jù)=,可求出時間t;當(dāng)Rt△CPQ∽Rt△CBA時,根據(jù)=,可求出時間t.
(1)由題意得:AP=4t,CQ=2t,則CP=20﹣4t,因此Rt△CPQ的面積為S=CP×CQ=(0≤t≤5);
(2)由題意得:AP=4t,CQ=2t,則CP=20﹣4t,當(dāng)t=3秒時,CP=20﹣4t=8cm,CQ=2t=6cm.
在Rt△CPQ中,由勾股定理得:PQ=;
(3)由題意得:AP=4t,CQ=2t,則CP=20﹣4t.
分兩種情況討論:
①當(dāng)Rt△CPQ∽Rt△CAB時,,即,解得:t=3秒;
②當(dāng)Rt△CPQ∽Rt△CBA時,,即,解得:t=秒.
因此t=3秒或t=秒時,以點C、P、Q為頂點的三角形與△ABC相似.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,于,平分,于,與相交于點,是邊的中點,連接與相交于點,下列結(jié)論:①;②;③是等腰三角形;④.正確的有( )個.
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學(xué)校接小紅回家,小紅爸爸出發(fā)的同時,小紅以96m/min的速度從學(xué)校沿同一條道路步行回家,小紅爸爸趕到學(xué)校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設(shè)他們出發(fā)的時間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1與t之間的函數(shù)關(guān)系,線段EF表示小紅與家之間的距離S2與t之間的函數(shù)關(guān)系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時間是( )
A.12minB.16minC.18minD.20min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2-2ax-1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A. 當(dāng)a=1時,函數(shù)圖象過點(-1,1)
B. 當(dāng)a=-2時,函數(shù)圖象與x軸沒有交點
C. 若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D. 若a<0,則當(dāng)x≤1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)△PAC的周長最小時,求點P的坐標(biāo);
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標(biāo);
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到 達(dá)點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com