【題目】如圖,ABC是等腰直角三角形,BAC=90°,AB=AC,四邊形ADEF是正方形,點BC分別在邊AD、AF上,此時BD=CF,BDCF成立.

1)當(dāng)ABC繞點A逆時針旋轉(zhuǎn) 時,如圖,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由

2)當(dāng)ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖,延長DBCF于點H;

求證:BDCF;

(ⅱ)當(dāng)AB=2,AD=時,求線段DH的長.

【答案】1)詳見解析;(2)①詳見解析;② .

【解析】試題分析:1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)和全等三角形的判定定理證明

證明結(jié)論;
2①根據(jù)全等三角形的性質(zhì)、垂直的定義證明即可;
②連接DF,延長ABDFM,根據(jù)題意和等腰直角三角形的性質(zhì)求出DM、BM的長,根據(jù)勾股定理求出BD的長,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可得到答案.

試題解析:(1)BD=CF.

理由如下:由題意得,∠CAF=BAD= ,

在△CAF和△BAD中,

∴△CAF≌△BAD,

BD=CF

(2)①由(1)得△CAF≌△BAD,

∴∠CFA=BDA

,即BDCF;

②連接DF,延長ABDFM,

∵四邊形ADEF是正方形,

AM=DM=3,BM=AMAB=1

∵△ABC繞點A逆時針旋轉(zhuǎn),

∴∠BAD=,

AMDF

∴△DMB∽△DHF,

解得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個轉(zhuǎn)盤分成六等份,依次標(biāo)上數(shù)字1、2、3、4、5、6,小明和小芳分別只轉(zhuǎn)動一次轉(zhuǎn)盤.小明同學(xué)先轉(zhuǎn)動轉(zhuǎn)盤,結(jié)果指針指向2,接下來小芳轉(zhuǎn)動轉(zhuǎn)盤,若把小明和小芳轉(zhuǎn)動轉(zhuǎn)盤指針指向的數(shù)字分別記作、,把、作為點的橫、縱坐標(biāo).

(1)寫出點所有可能的坐標(biāo);

(2)求點在直線上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B在反比例函數(shù)y=的圖象上,過點A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )

A.2 B.4 C.﹣2 D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A3,0),對稱軸為直線x=1,給出以下結(jié)論:①abc0,0,4b+c0,④若B、C為函數(shù)圖象上的兩點,則,⑤當(dāng)時, .其中正確的結(jié)論是(填寫代表正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,物理教師為同學(xué)們演示單擺運動,單擺左右擺動中,在OA的位置時俯角∠EOA=30°,在OB的位置時俯角∠FOB=60°,若OCEF,點A比點B7cm

1)求單擺的長度;

2)求從點A擺動到點B經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(

A.有且只有一條直線與已知直線垂直;

B.從直線外一點到這條直線的垂線段,叫做這點到這條直線距離;

C.互相垂直的兩條線段一定相交;

D.直線外一點與直線上各點連接而成的所有線段中,最短線段的長度是,則點到直線的距離是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形

B.一組鄰邊相等,對角線互相垂直的四邊形是菱形

C.矩形對角線相等且平分一組對角

D.正方形面積等于對角線乘積的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,點的中點,點在線段上以的速度由點向點運動(點不與點重合),同時點在線段上由點向點運動.

1)若點的運動速度與點的運動速度相等,當(dāng)運動時間是時,是否全等?請說明理由;

2)若點的運動速度與點的運動速度不相等,當(dāng)全等時,點的運動時間是_______________;運動速度是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,是等腰直接角三角形,,點邊上一點,連接交于點,點恰好是中點,連接.

1)求證:;

2)連接AMAE,請?zhí)骄?/span>ANEN的位置關(guān)系與數(shù)量關(guān)系。

①寫出ANEM:位置關(guān)系___;數(shù)量關(guān)系___;

②請證明上述結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案