【題目】如圖,在四邊形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=AC,△ADC的外接圓⊙O交BC于點E,連接DE并延長交AB延長線于點F.
(1)求證:CF=DB;
(2)當AD=時,求AB的長.
【答案】詳見解析.
【解析】
(1)連結AE,由∠ABC=60°,AB=BC可判斷△ABC為等邊三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,則根據圓周角定理可得到AC為⊙O的直徑,則∠AEC=90°,即AE⊥BC,根據等邊三角形的性質得BE=CE,再證明△DCE≌△FBE,得到DE=FE,于是可判斷四邊形BDCF為平行四邊形,根據平行四邊形的性質得CF=DB;
(2)作EH⊥CF于H,由△ABC為等邊三角形得∠BAC=60°,則∠DAC=30°,在Rt△ADC中,根據含30度的直角三角形三邊的關系得DC=AD=1,AC=2CD=2.
則AB=AC=2
(1)證明:連結AE,如圖,
∵∠ABC=60°,AB=BC,
∴△ABC為等邊三角形,
∵AB∥CD,∠DAB=90°,
∴∠ADC=∠DAB=90°,
∴AC為⊙O的直徑,
∴∠AEC=90°,即AE⊥BC,
∴BE=CE,
CD∥BF,
∴∠DCE=∠FBE,
在△DCE和△FBE中,
,
∴△DCE≌△FBE(ASA),
∴DE=FE,
∴四邊形BDCF為平行四邊形,
∴CF=DB;
(2)解:作EH⊥CF于H,如圖,
∵△ABC為等邊三角形,
∴∠BAC=60°,
∴∠DAC=30°,
在Rt△ADC中,AD=,
∴DC=AD=1,AC=2CD=2,
∴AB=AC=2.
科目:初中數學 來源: 題型:
【題目】我市某蔬菜生產基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚里溫度y(℃)隨時間x(h)變化的函數圖象,其中AB段是恒溫階段,BC段是雙曲線的一部分,請根據圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統(tǒng)在一天內保持大棚里溫度在15℃及15℃以上的時間有多少小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應環(huán)保組織提出的“低碳生活”的號召,李明決定不開汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時間,車修好后繼續(xù)騎行,直至到達工廠(假設在騎自行車過程中勻速行駛).李明離家的距離y(米)與離家時間x(分鐘)的關系表示如下圖:
(1)李明從家出發(fā)到出現故障時的速度為 米/分鐘;
(2)李明修車用時 分鐘;
(3)求線段OA所對應的函數關系式(不要求寫出自變量的取值范圍).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數;
(2)若CD=2,AB=8,求半徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知四邊形ABCD為平行四邊形,BE平分∠ABC交AD于點E.
(1)若∠AEB=25°,求∠C的度數;
(2)若AE=5 cm,求CD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩同學騎自行車從A地沿同一條路到B地,已知乙比甲先出發(fā).他們離出發(fā)地的距離s/km和騎行時間t/h之間的函數關系如圖所示.根據圖象信息,以下說法錯誤的是( )
A.他們都騎了20 km
B.兩人在各自出發(fā)后半小時內的速度相同
C.甲和乙兩人同時到達目的地
D.相遇后,甲的速度大于乙的速度
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】校學生會體育部為更好的開展同學們課外體育活動,現對學生最喜歡的一項球類運動進行了隨機抽樣調查,根據調查的結果繪制成如圖①和②所示的兩幅不完整的統(tǒng)計圖,其中 A.喜歡籃球 B.喜歡足球 C.喜歡乒乓球,D.喜歡排球,請你根據統(tǒng)計圖提供的信息,完成下列問題:
(1)本次一共調查了 名學生;
(2)把圖①匯總條形統(tǒng)計圖補充完整;
(3)求圖②中表示“D.喜歡排球”部分所在扇形的圓心角的度數;
(4)若該校有3000名學生,請你估計全?赡苡卸嗌倜麑W生喜歡足球運動.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com