【題目】閱讀理解
如圖1,中,沿的平分線折疊,剪掉重疊部分;將余下部分沿的平分線折疊,剪掉重疊部分;……;將余下部分沿的平分線折疊,點(diǎn)與點(diǎn)重合,無論折疊多少次,只要最后一次恰好重合,我們就稱是的好角.
情形一:如圖2,沿等腰三角形頂角的平分線折疊,點(diǎn)與點(diǎn)重合;
情形二:如圖3,沿的的平分線折疊,剪掉重疊部分;將余下的部分沿的平分線折疊,此時(shí)點(diǎn)與點(diǎn)重合.
探究發(fā)現(xiàn)
(1)中,,經(jīng)過兩次折疊,問 的好角(填寫“是”或“不是”);
(2)若經(jīng)過三次折疊發(fā)現(xiàn)是的好角,請?zhí)骄?/span>與(假設(shè))之間的等量關(guān)系 ;
根據(jù)以上內(nèi)容猜想:若經(jīng)過次折疊是的好角,則與(假設(shè))之間的等量關(guān)系為 ;
應(yīng)用提升:
(3)小麗找到一個(gè)三角形,三個(gè)角分別為,,,發(fā)現(xiàn) 是此三角形的好角;
(4)如果一個(gè)三角形的最小角是,且滿足該三角形的三個(gè)角均是此三角形的好角;
則此三角形另外兩個(gè)角的度數(shù) .
【答案】(1)是;(2);;(3)和;(4)另外兩個(gè)角的度數(shù)分別為和
【解析】
(1)由沿的平分線折疊,得,且,沿的平分線折疊,此時(shí)點(diǎn)與重合,可得,即可證.
(2)由沿的平分線折疊,得,由將余下部分沿的平分線折疊,得,最后沿的平分線折疊,點(diǎn)與點(diǎn)重合,得,由,可證;由小麗展示的情形一當(dāng)時(shí);由探究(1)當(dāng)時(shí);由探究(2)當(dāng)時(shí),它們的均是的好角;可推經(jīng)過次折疊,是的好角,則與的等量關(guān)系為.
(3)由(2)得,可計(jì)算是的好角.
(4)由(2)知,是的好角,已知中一個(gè)三角形的最小角是,且這個(gè)三角形三個(gè)角均是的好角,可設(shè)另外兩個(gè)角為、,(其中都是正整數(shù)),依題意列式,可求解得.
(1)中,,經(jīng)過兩次折疊,是的好角;
理由如下:沿的平分線折疊,
;
將余下部分沿的平分線折疊,此時(shí)點(diǎn)與重合,
;
;
,
故答案是:是;
(2)在中,沿的平分線折疊,剪掉重復(fù)部分;將余下部分沿的平分線折疊,剪掉重復(fù)部分,將余下部分沿的平分線折疊,點(diǎn)與點(diǎn)重合,則是的好角.
證明:,,
,
,
,
,
由小麗展示的情形一知,當(dāng)時(shí),是的好角;
由探究(1)知,當(dāng)時(shí),是的好角;
由探究(2)知,當(dāng)時(shí),是的好角;
故若經(jīng)過次折疊,是的好角,則與的等量關(guān)系為.
故答案為:.
(3)由(2)知,,
,
,
是的好角.
故答案為:.
(4)由(2)知,是的好角,一個(gè)三角形的最小角是,且這個(gè)三角形三個(gè)角均是的好角,可設(shè)另外兩個(gè)角為、,(其中都是正整數(shù)).
依題意得,
化簡得,
都是正整數(shù),
都是17的整數(shù)因子,
,,
,,
,,
即該三角形的另外兩個(gè)角是:和.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1 ,在中,是邊上一點(diǎn)(不與點(diǎn)重合),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.
(發(fā)現(xiàn)問題)
(1)如圖1 ,通過圖形旋轉(zhuǎn)的性質(zhì),可知_______, 度;
(解決問題)
(2)如圖1,證明;
(拓展延伸)
如圖2,在中,為外一點(diǎn),且,仍將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.
(3)若求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:
問題情境:在一次綜合實(shí)踐活動課上,同學(xué)們以菱形為對象,研究菱形旋轉(zhuǎn)中的問題:
已知,在菱形ABCD中,BD為對角線,,AB=4,將菱形ABCD繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位°).旋轉(zhuǎn)后的菱形為.在旋轉(zhuǎn)探究活動中提出下列問題,請你幫他們解決.
觀察證明:
(1)如圖1,若旋轉(zhuǎn)角,與BD相交于點(diǎn)M,AB與相交于點(diǎn)N.請說明線段DM與的數(shù)量關(guān)系;
操作計(jì)算:
(2)如圖2,連接,菱形ABCD旋轉(zhuǎn)的過程中,當(dāng)與AB互相垂直時(shí),的長為 ;
(3)如圖3,若旋轉(zhuǎn)角,分別連接,,過點(diǎn)A分別作,,連接EF,菱形ABCD旋轉(zhuǎn)的過程中,發(fā)現(xiàn)在中存在長度不變的線段EF,請求出EF長度;
操作探究:
(4)如圖4,在(3)的條件下,請判斷以,,三條線段長度為邊的三角形是什么特殊三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為1:2(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).
(1)求小明從點(diǎn)A走到點(diǎn)D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A﹣C﹣B﹣A運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(t>0).
(1)若點(diǎn)P在AC上,且滿足PA=PB時(shí),求出此時(shí)t的值;
(2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;
(3)在運(yùn)動過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計(jì)劃再一次性購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺,若商店保持同種電腦的售價(jià)不變,請你根據(jù)以上信息,設(shè)計(jì)出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,點(diǎn)P(x,y)的橫、縱坐標(biāo)的絕對值之和叫做點(diǎn)P(x,y)的勾股值,記[P]=|x|+|y|.
(1)已知M(p,2p)在反比例函數(shù)y=的圖象上,且[M]=3,求反比例函數(shù)的解析式;
(2)已知點(diǎn)A是直線y=x+2上的點(diǎn),且[A]=4,求點(diǎn)A的坐標(biāo);
(3)若拋物線y=ax2+bx+1與直線y=x只有一個(gè)交點(diǎn)C,已知點(diǎn)C在第一象限,且2≤[C]≤4,令t=2b2﹣4a+2020,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)城有甲、乙兩家葡萄采摘園的葡萄銷售價(jià)格相同,中秋期間,兩家采摘園推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的葡萄六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的葡萄按售價(jià)付款。優(yōu)惠期間,設(shè)游客的葡萄采摘量為(千克),在甲園所需總費(fèi)用為甲(元),在乙園所需總費(fèi)用為乙(元),甲,乙與之間的函數(shù)關(guān)系如圖所示.
(1)求甲,乙與的函數(shù)表達(dá)式;
(2)在中秋期間,李娜一家三口準(zhǔn)備去葡萄園采摘葡萄,采摘的葡萄合在一起支付費(fèi)用,則李娜一家應(yīng)選擇哪家葡萄園更劃算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com