【題目】定義:頂點(diǎn)、開(kāi)口大小相同,開(kāi)口方向相反的兩個(gè)二次函數(shù)互為“反簇二次函數(shù)”.

1)已知二次函數(shù)y=﹣(x﹣2)23,則它的“反簇二次函數(shù)”是__________________;

2)已知關(guān)于x的二次函數(shù)y1=2x22mxm+1y2=ax2+bxc,其中y1的圖像經(jīng)過(guò)點(diǎn)(1,1.若y1y2y1互為“反簇二次函數(shù)”.求函數(shù)y2的表達(dá)式,并直接寫(xiě)出當(dāng)0x3時(shí),y2的最小值.

【答案】(1)、y=(x﹣22+3;(2)、-16.

【解析】分析:(1)、根據(jù)“反簇二次函數(shù)”的定義得出答案;(2)、根據(jù)y1的圖像經(jīng)過(guò)點(diǎn)A1,1)求出m的值,然后得出y1+y2的函數(shù)解析式,根據(jù)“反簇二次函數(shù)”的定義得出a、b、c的值,從而得出y2的函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)得出最小值.

詳解:(1)y=(x﹣22+3

(2)∵y1的圖像經(jīng)過(guò)點(diǎn)A1,1), ∴22m+m+2=2. 解得m=2

y1=2x24x+3=2x1)2+1. ∴y1+y2=2x24x+3+ax2+bx+c=(a+2x2+(b4x+c+3,

y1+y2y1為“反簇二次函數(shù)”, ∴y1+y2=-2x12+1=﹣2x2+4x1,

解得. ∴函數(shù)y2的表達(dá)式為:y2=﹣4x2+8x4

當(dāng)0x3時(shí),y2的最小值為﹣16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)期間,某品牌粽子經(jīng)銷(xiāo)商銷(xiāo)售甲、乙兩種不同味道的粽子,已知一個(gè)甲種粽子和一個(gè)乙種粽子的進(jìn)價(jià)之和為10元,每個(gè)甲種粽子的利潤(rùn)是4元,每個(gè)乙種粽子的售價(jià)比其進(jìn)價(jià)的2倍少1元,小王同學(xué)買(mǎi)4個(gè)甲種粽子和3個(gè)乙種粽子一共用了61元

1甲、乙兩種粽子的進(jìn)價(jià)分別是多少元?

21的前提下,經(jīng)銷(xiāo)商統(tǒng)計(jì)發(fā)現(xiàn):平均每天可售出甲種粽子200個(gè)和乙種粽子150個(gè)如果將兩種粽子的售價(jià)各提高1元,則每天將少售出50個(gè)甲種粽子和40個(gè)乙種粽子為使每天獲取的利潤(rùn)更多,經(jīng)銷(xiāo)商決定把兩種粽子的價(jià)格都提高x元在不考慮其他因素的條件下,當(dāng)x為多少元時(shí),才能使該經(jīng)銷(xiāo)商每天銷(xiāo)售甲、乙兩種粽子獲取的利潤(rùn)為1190元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗. 我市某食品廠為了解市民對(duì)去年銷(xiāo)量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整) 請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖直角坐標(biāo)系內(nèi),四邊形AOBC是邊長(zhǎng)為2的菱形,E為邊OB的中點(diǎn),連結(jié)AE與對(duì)角線(xiàn)OC交于點(diǎn)D,且∠BCO=∠EAO,則點(diǎn)D坐標(biāo)為(

A. B. 1, C. D. 1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次大型活動(dòng),組委會(huì)啟用無(wú)人機(jī)航拍活動(dòng)過(guò)程,在操控?zé)o人機(jī)時(shí)應(yīng)根據(jù)現(xiàn)場(chǎng)狀況調(diào)節(jié)高度,已知無(wú)人機(jī)在上升和下降過(guò)程中速度相同,設(shè)無(wú)人機(jī)的飛行高度為y(米),操控?zé)o人機(jī)的時(shí)間為x(分),yx之間的函數(shù)圖像如圖所示.

1)無(wú)人機(jī)的速度為________米/分;

2)求線(xiàn)段BC所表示的yx之間函數(shù)表達(dá)式;

3)無(wú)人機(jī)在50米上空持續(xù)飛行時(shí)間為_________分.(直接填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市從日開(kāi)始實(shí)施階梯電價(jià)制,居民生活用電價(jià)格方案如下:

檔次

月用電量

電價(jià)

(單位:元度)

春秋季(,,,月)

冬夏季(,,,月)

不超過(guò)度的部分

不超過(guò)度的部分

超過(guò)度但不超過(guò)度的部分

超過(guò)度但不超過(guò)度的部分

超過(guò)度的部分

超過(guò)度的部分

例:若某用戶(hù)月的用電量為度,則需交電費(fèi)為:

(元).

1)若小辰家月的用電量為度,則需交電費(fèi)多少元?

2)若小辰家月和月用電量相同,共交電費(fèi)元,問(wèn)小辰家月份用多少度電?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)》是中國(guó)數(shù)學(xué)史上的重要著作,比我們熟知的漢代《九章算術(shù)》還要古老,保存了許多古代算法的最早例證(比如勾股概念),改變了我們對(duì)周秦?cái)?shù)學(xué)發(fā)展水平的認(rèn)識(shí).文中記載有婦三人,長(zhǎng)者一日織五十尺,中者二日織五十尺,少者三日織五十尺,今威有功五十尺,問(wèn)各受幾何?譯文:三位女人善織布,姥姥1天織布50尺,媽媽2天織布50尺,妞妞3天織布50尺.如今三人齊上陣,共同完成50尺織布任務(wù),請(qǐng)問(wèn)每人織布幾尺?設(shè)三人一共用了x天完成織布任務(wù),則可列方程為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿(mǎn)足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫(xiě)出中點(diǎn)四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分類(lèi)討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來(lái)求解.例如:若|x|=2,|y|=3求x+y的值.

情況若x=2,y=3時(shí),x+y=5

情況若x=2,y=﹣3時(shí),x+y=﹣1

情況若x=﹣2,y=3時(shí),x+y=1

情況若x=﹣2,y=﹣3時(shí),x+y=﹣5

所以,x+y的值為1,﹣1,5,﹣5.

幾何的學(xué)習(xí)過(guò)程中也有類(lèi)似的情況:

問(wèn)題(1):已知點(diǎn)A,B,C在一條直線(xiàn)上,若AB=8,BC=3,則AC長(zhǎng)為多少?

通過(guò)分析我們發(fā)現(xiàn),滿(mǎn)足題意的情況有兩種

情況當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),如圖1,此時(shí),AC=   

情況當(dāng)點(diǎn)C在點(diǎn)B的左側(cè)時(shí),如圖2,此時(shí),AC=   

通過(guò)以上問(wèn)題,我們發(fā)現(xiàn),借助畫(huà)圖可以幫助我們更好的進(jìn)行分類(lèi).

問(wèn)題(2):如圖3,數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)分別是﹣1和2,點(diǎn)C是數(shù)軸上一點(diǎn),且BC=2AB,則點(diǎn)C表示的數(shù)是多少?

仿照問(wèn)題1,畫(huà)出圖形,結(jié)合圖形寫(xiě)出分類(lèi)方法和結(jié)果.

問(wèn)題(3):點(diǎn)O是直線(xiàn)AB上一點(diǎn),以O(shè)為端點(diǎn)作射線(xiàn)OC、OD,使AOC=60°,OCOD,求BOD的度數(shù).畫(huà)出圖形,直接寫(xiě)出結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案