【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
…
(1)請猜想:1+3+5+7+9+…+19=________;
(2)請猜想:1+3+5+7+9+…+(2n-1)=________;
(3)試計算:101+103+…+197+199.
【答案】(1)102 ;(2)n2 ;(3)7500.
【解析】
(1)觀察不難發(fā)現(xiàn),從1開始的連續(xù)奇數(shù)的和等于首尾兩個奇數(shù)的和的一半的平方,根據(jù)此規(guī)律進行計算即可得解;
(2)觀察不難發(fā)現(xiàn),從1開始的連續(xù)奇數(shù)的和等于首尾兩個奇數(shù)的和的一半的平方,根據(jù)此規(guī)律進行計算即可得解;
(3)用從1開始到199的和減去從1開始到99的和,然后利用前面結(jié)論進行計算即可得解.
(1)1+3+5+7+9+…+19
=
=100;
(2)1+3+5+7+9+…+(2n-1)
=
=n2;
(3)101+103+…+197+199
=(1+3+…+197+199)-(1+3+…+97+99)
=-
=1002-502
=7500.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)比較左、右兩圖的陰影部分面積,可以得到乘法公式 _________ (用式子表達).
(2)運用你所得到的公式,計算(a+2b﹣c)(a﹣2b﹣c).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點.
(1)求證:AB是⊙O的直徑;
(2)判斷DE與⊙O的位置關(guān)系,并加以證明;
(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設(shè)CP=t(0<t<10).
(1)請直接寫出B、C兩點的坐標(biāo)及拋物線的解析式;
(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當(dāng)t為何值時,∠PBE=∠OCD?
(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當(dāng)四邊形PMQN為正方形時,請求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①過一點有且只有一條直線與已知直線平行;②過一點有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結(jié)、兩點的線段就是、兩點之間的距離,其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,∠ACB=90°,AC=BC,點E是BC上一點,連接AE.
(1)如圖1,當(dāng)∠BAE=15°,CE=時,求AB的長.
(2)如圖2,延長BC至D,使DC=BC,將線段AE繞點A順時針旋轉(zhuǎn)90°得線段AF,連接DF,過點B作BG⊥BC,交FC的延長線于點G,求證:BG=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=80°,∠B=40°.
(1)求作線段BC的垂直平分線DE,垂足為E,交AB于點D;(要求;尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接CD,求證:AC=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一組按照某種規(guī)律擺放而成的圖案,其中圖1有個三角形,圖2有個三角形,圖3有個三角形,……,照此規(guī)律,則圖10中三角形的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com