【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn),交軸于點(diǎn).

1)求拋物線的解析式.

2)點(diǎn)是線段上一動(dòng)點(diǎn),過點(diǎn)垂直于軸于點(diǎn),交拋物線于點(diǎn),求線段的長度最大值.

【答案】1;(24.

【解析】

1)根據(jù)A、B坐標(biāo)可得拋物線兩點(diǎn)式解析式,化為一般形式即可;

2)根據(jù)拋物線解析式可得C點(diǎn)坐標(biāo),利用待定系數(shù)法可得直線AC的解析式為y=-x+4,設(shè)點(diǎn)坐標(biāo)為,則,用m表示出DF的長,配方為二次函數(shù)頂點(diǎn)式的形式,根據(jù)二次函數(shù)的性質(zhì)求出DF的最大值即可.

1)∵拋物線經(jīng)過點(diǎn),

∴拋物線的解析式為.

2)∵拋物線的解析式為,

設(shè)直線的解析式為y=kx+b,

,b=4,

∴直線AC的解析式為

設(shè)點(diǎn)坐標(biāo)為,則

=-(m-2)2+4,

∴當(dāng)m=2時(shí),DF的最大值為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為,其圖象與軸的交點(diǎn)的橫坐標(biāo)分別為,.與軸負(fù)半軸交于點(diǎn),在下面五個(gè)結(jié)論中:

;②;③;④只有當(dāng)時(shí),是等腰直角三角形;使為等腰三角形的值可以有四個(gè).

其中正確的結(jié)論有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx22mx+m22y軸交于點(diǎn)C

1)拋物線的頂點(diǎn)坐稱為   ,點(diǎn)C坐標(biāo)為   ;(用含m的代數(shù)式表示)

2)當(dāng)m1時(shí),拋物線上有一動(dòng)點(diǎn)P,設(shè)P點(diǎn)橫坐標(biāo)為n,且n0

①若點(diǎn)Px軸的距離為2時(shí),求點(diǎn)P的坐標(biāo);

②設(shè)拋物線在點(diǎn)C與點(diǎn)P之間部分(含點(diǎn)C和點(diǎn)P)最高點(diǎn)與最低點(diǎn)縱坐標(biāo)之差為h,求hn之間的函數(shù)關(guān)系式,并寫出自變量n的取值范圍;

3)若點(diǎn)A(﹣3,2)、B22),連結(jié)AB,當(dāng)拋物線yx22mx+m22與線段AB只有一個(gè)交點(diǎn)時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線中,函數(shù)值y與自變量之間的部分對應(yīng)關(guān)系如下表:

0

1

y

0

1)求該拋物線的表達(dá)式;

2)如果將該拋物線平移,使它的頂點(diǎn)移到點(diǎn)M2,4)的位置,那么其平移的方法是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x1,點(diǎn)B坐標(biāo)為(﹣1,0),則下面的四個(gè)結(jié)論,其中正確的個(gè)數(shù)為( 。

2a+b04a2b+c0ac0④當(dāng)y0時(shí),﹣1x4

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在水平面E處,測得某建筑物AB的頂端A的仰角為42°,向正前方向走37米到達(dá)點(diǎn)D處,再往斜坡CD上走30米到達(dá)點(diǎn)C處,測得建筑物AB的頂端A的仰角為63.5°,已知斜坡CD的坡度為i10.75,建筑物AB垂直于平臺BC,平臺BC與水平面DE平行,點(diǎn)A、B、C、D、E均在同一平面內(nèi),則建筑物AB的高度約為(  )(精確到0.1米,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74tan42°≈0.90,sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.0

A.42.4B.46.4C.48.5D.50.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,連接AC,∠BAC90°ABAC,點(diǎn)E是邊BC上一點(diǎn),連接DE,交AC于點(diǎn)F,∠ADE30°

1)如圖1,若AF2,求BC的長;

2)如圖2,過點(diǎn)AAGDE于點(diǎn)H,交BC于點(diǎn)G,點(diǎn)OAC中點(diǎn),連接GO并延長交AD于點(diǎn)M.求證:AG+CGDM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中.

1)求從袋中隨機(jī)摸出一球,標(biāo)號是1的概率;

2)從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號之和為偶數(shù)時(shí),則甲勝;若兩次摸出的球的標(biāo)號之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:ab<0,b24a,0<a+b+c<2,0<b<1,當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是

A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)

查看答案和解析>>

同步練習(xí)冊答案