8.用無刻度的直尺畫一條直線將圖?①、圖?②分成面積相等的兩部分(保留作圖痕跡)

分析 根據(jù)矩形是中心對稱圖形,故過對稱中心的直線能把矩形分成面積相等的兩部分,作圖即可.

解答 解:如圖所示:

點評 本題考查了作圖-應(yīng)用與設(shè)計作圖,解決此類題目的要首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖圖形的面積;此題熟練掌握矩形的性質(zhì),并能進行推理作圖是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=20°;
(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,點E,C在線段BF上,且BE=CF,若AB=DE,要使△ABC≌△DEF,還需要添加的一個條件是( 。
A.∠ACB=∠DFEB.∠A=∠DC.AC∥DFD.∠B=∠DEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.下列計算正確的是( 。
A.-($\frac{1}{3}$)-2=9B.(-2a32=4a6C.$\sqrt{(-2a)^{2}}$=-2D.a6÷a3=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標(biāo)分別為-1,3,則下列結(jié)論正確的個數(shù)有( 。
①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC∽△DEF,且△ABC的面積與△DEF的面積之比為4:9,則AB:DE=(  )
A.4:9B.2:3C.16:81D.9:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,已知A、B、C三點的坐標(biāo)分別為A(-2,0),B(6,0),C(0,-3).
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)過C點作CD平行于x軸交拋物線于點D,寫出D點的坐標(biāo),并求AD、BC的交點E的坐標(biāo);
(3)若拋物線的頂點為P,連結(jié)PC、PD.
①判斷四邊形CEDP的形狀,并說明理由;
②若在拋物線上存在點Q,使直線OQ將四邊形PCED分成面積相等的兩個部分,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE,DG.

(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=3$\sqrt{3}$.
①求BE的長;②求點A到BE的距離;
(3)當(dāng)點C落在直線BE上時,連接FC,直接寫出∠FCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.一元二次方程x2+3x-5=0的兩根為x1,x2,則x1+x2的值是(  )
A.3B.5C.-3D.-5

查看答案和解析>>

同步練習(xí)冊答案