【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.

(1)求證:MN=AM+BN.
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請(qǐng)說明理由.

【答案】
(1)證明:∵AM⊥MN,BN⊥MN,

∴∠AMC=∠CNB=90°,

∵∠ACB=90°,

∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,

∴∠MAC=∠NCB,

在△AMC和△CNB中,

∠AMC=∠CNB,

∠MAC=∠NCB,

AC=CB,

△AMC≌△CNB(AAS),

AM=CN,MC=NB,

∵M(jìn)N=NC+CM,

∴MN=AM+BN


(2)證明:結(jié)論:MN=BN﹣AM.

∵AM⊥MN,BN⊥MN,

∴∠AMC=∠CNB=90°,

∵∠ACB=90°,

∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,

∴∠MAC=∠NCB,

在△AMC和△CNB中,

∠AMC=∠CNB,

∠MAC=∠NCB,

AC=CB,

△AMC≌△CNB(AAS),

AM=CN,MC=NB,

∵M(jìn)N=CM﹣CN,

∴MN=BN﹣AM


【解析】(1)利用互余關(guān)系證明∠MAC=∠NCB,又∠AMC=∠CNB=90°,AC=BC,故可證△AMC≌△CNB,從而有AM=CN,MC=BN,利用線段的和差關(guān)系證明結(jié)論;(2)類似于(1)的方法,證明△AMC≌△CNB,從而有AM=CN,MC=BN,可推出AM、BN與MN之間的數(shù)量關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動(dòng)點(diǎn)C從原點(diǎn)O開始沿OA方向以每秒1個(gè)單位長度移動(dòng),動(dòng)點(diǎn)D從點(diǎn)B開始沿BO方向以每秒1個(gè)單位長度移動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng).

(1)直接寫出拋物線的解析式:

(2)求△CED的面積S與D點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時(shí),在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列從左到右的變形,屬于因式分解的是( )

A. (a+1)(a-1)=a2-1 B. 2a-2b=2(a-b)

C. a2-2a+1=a(a-2)+1 D. a+2b=(a+b)+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1nm(納米)=0.000 000 001m,則4.5納米用科學(xué)記數(shù)法表示為_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.
證明:DE=BD+CE.

(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)環(huán)境保護(hù)意識(shí),6月5日“世界環(huán)境日”當(dāng)天,在環(huán)保局工作人員指導(dǎo)下,若干名“環(huán)保小衛(wèi)士”組成的“控制噪聲污染”課題學(xué)習(xí)研究小組,抽樣調(diào)查了全市40個(gè)噪聲測(cè)量點(diǎn)在某時(shí)刻的噪聲聲級(jí)(單位:dB),將調(diào)查的數(shù)據(jù)進(jìn)行處理(設(shè)所測(cè)數(shù)據(jù)是正整數(shù)),得不完整頻數(shù)分布表和頻數(shù)分布直方圖如下:

根據(jù)表中提供的信息解答下列問題:

(1)頻數(shù)分布表中的a =________,b=________,c =_________;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)如果全市共有200個(gè)測(cè)量點(diǎn),那么在這一時(shí)刻噪聲聲級(jí)小于75dB的測(cè)量點(diǎn)約有多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB=10cm,點(diǎn)C是直線AB上一點(diǎn),BC=4cm,若M是AB的中點(diǎn),N是BC的中點(diǎn),則線段MN的長度是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時(shí)路程與時(shí)間的函數(shù)圖象,問

(1)在剛出發(fā)時(shí)我公安快艇距走私船多少海里?
(2)計(jì)算走私船與公安快艇的速度分別是多少?
(3)寫出L1 , L2的解析式
(4)問6分鐘時(shí)兩艇相距幾海里.
(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( )

A.3cm
B.4cm
C.5cm
D.6cm

查看答案和解析>>

同步練習(xí)冊(cè)答案