【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B.C不重合),點Q在CD邊上,且BP=CQ,連接AP、BQ交于點E,將△BQC沿BQ所在直線對折得到△BQN,延長QN交BA的延長線于點M.
(1)求證:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長。
【答案】(1)證明見解析;(2)MQ=;(3)AM=.
【解析】
試題(1)證明△ABP≌△BCQ,則∠BAP=∠CBQ,從而證明∠CBQ+∠APB=90°,進而得證;
(2)設MQ=MB=x,則MN=x﹣2.在直角△MBN中,利用勾股定理即可列方程求解;
(3)設AM=y,BN=BC=m+n,在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,利用勾股定理即可求解.
試題解析:(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,∵AB=BC,∠ABC=∠C,BP=CQ,∴△ABP≌△BCQ,∴∠BAP=∠CBQ.
∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;
(2)解:∵正方形ABCD中,AB=3,BP=2CP,∴BP=2,由(1)可得NQ=CQ=BP=2,NB=3.
又∵∠NQB=∠CQB=∠ABQ,∴MQ=MB.
設MQ=MB=x,則MN=x﹣2.
在直角△MBN中,,即,解得:x=,即MQ=;
(3)∵BP=m,CP=n,由(1)(2)得MQ=BM,CQ=QN=BP=m,設AM=y,BN=BC=m+n,在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,,即,則y=,AM=.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結論的序號都選上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由一些正整數組成的數表如下(表中下一行中數的個數是上一行中數的個數的2倍):
若規(guī)定坐標號(m,n)表示第m行從左向右第n個數,則(7,4)所表示的數是_____;(5,8)與(8,5)表示的兩數之積是_______;數2012對應的坐標號是_________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 O 是等邊△ABC 內一點,∠AOB=105°,∠BOC 等于α,將△BOC 繞點 C 按 順時針方向旋轉 60°得△ADC,連接 OD.
(1)求證:△COD 是等邊三角形.
(2)求∠OAD 的度數.
(3)探究:當α為多少度時,△AOD 是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】給出下列命題:
①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;
②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;
③△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;
④△ABC中,若 a:b:c=1:2:,則這個三角形是直角三角形.
其中,正確命題的個數為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線AB:y=x+b交y軸于點A(0,4),交x軸于點B.
(1)求點B的坐標;
(2)直線l垂直平分OB交AB于點D,交x軸于點E,點P是直線l上一動點,且在點D的上方,設點P的縱坐標為n.
①用含n的代數式表示△ABP的面積;
②當S△ABP=8時,求點P的坐標;
(3)在(2)中②的條件下,以PB為斜邊作等腰直角△PBC,求點C的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC繞點A逆時針旋轉80°后得到△A′B′C′(點B的對應點是點B′,點C的對應點是點C′,連接BB′,若∠B′BC=20°,則∠BB′C′的大小是( 。
A. 82° B. 80° C. 78° D. 76°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com