【題目】如圖,平面直角坐標系中,直線AB:y=x+by軸于點A(0,4),交x軸于點B.

(1)求點B的坐標;

(2)直線l垂直平分OBAB于點D,交x軸于點E,點P是直線l上一動點,且在點D的上方,設點P的縱坐標為n.

①用含n的代數(shù)式表示△ABP的面積;

②當SABP=8時,求點P的坐標;

(3)(2)中②的條件下,以PB為斜邊作等腰直角△PBC,求點C的坐標。

【答案】1(4,0);(2)①SABP =2n4.;②(2,6);(3(6,4)(0,2)

【解析】

1)把點A的坐標代入直線解析式可求得b=4,則直線的解析式為y=-x+4,令y=0可求得x=4,故此可求得點B的坐標;

2)①由題l垂直平分OB可知OE=BE=2,將x=2代入直線AB的解析式可求得點D的坐標,設點P的坐標為(2,n),然后依據(jù)SAPB=SAPD+SBPD可得到APB的面積與n的函數(shù)關系式為SAPB=2n-4

②由SABP=8得到關于n的方程可求得n的值,從而得到點P的坐標;

③如圖1所示,過點CCMl,垂足為M,再過點BBNCM于點N.設點C的坐標為(p,q),先證明PCM≌△CBN,得到CM=BNPM=CN,然后由CM=BNPM=CN列出關于p、q的方程組可求得p、q的值;如圖2所示,同理可求得點C的坐標.

(1)∵把A(0,4)代入y=x+bb=4

∴直線AB的函數(shù)表達式為:y=x+4.

y=0得:x+4=0,解得:x=4

∴點B的坐標為(4,0).

(2)①∵l垂直平分OB,

OE=BE=2.

∵將x=2代入y=x+4得:y=2+4=2.

∴點D的坐標為(2,2).

∵點P的坐標為(2,n),

PD=n2.

SAPB=SAPD+SBPD,

SABP= PDOE+PDBE= (n2)×2+ (n2)×2=2n4.

②∵SABP=8,

2n4=8,解得:n=6.

∴點P的坐標為(2,6).

3)如圖1所示:過點CCMl,垂足為M,再過點BBNCM于點N.

設點C(p,q).

∵△PBC為等腰直角三角形,PB為斜邊,

PC=CB,PCM+MCB=90°.

CMlBNCM,

∴∠PMC=BNC=90°,MPC+PCM=90°.

∴∠MPC=NCB.

在△PCM和△CBN中,

,

∴△PCM≌△CBN.

CM=BN,PM=CN.

,解得 .

∴點C的坐標為(6,4).

如圖2所示:過點CCMl,垂足為M,再過點BBNCM于點N.

設點C(p,q).

∵△PBC為等腰直角三角形,PB為斜邊,

PC=CB,PCM+MCB=90°.

CMl,BNCM

∴∠PMC=BNC=90°,/span>MPC+PCM=90°.

∴∠MPC=NCB.

在△PCM和△CBN中,

∴△PCM≌△CBN.

CM=BN,PM=CN.

,解得 .

∴點C的坐標為(0,2).

綜上所述點C的坐標為(6,4)(0,2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.MAD中點,連接CMBD于點N,且ON=1.

(1)求BD的長;

(2)若DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古埃及人曾經(jīng)用如圖所示的方法畫直角:把一根長繩打上等距離的13個結,然后以3個結間距、4個結間距、5個結間距的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角,這樣做的道理是( 。

A. 直角三角形兩個銳角互補

B. 三角形內(nèi)角和等于180°

C. 如果三角形兩條邊長的平方和等于第三邊長的平方

D. 如果三角形兩條邊長的平方和等于第三邊長的平方,那么這個三角形是直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(PB.C不重合),點QCD邊上,且BP=CQ,連接AP、BQ交于點E,將BQC沿BQ所在直線對折得到BQN,延長QNBA的延長線于點M.

(1)求證:APBQ

(2)AB=3,BP=2PC,QM的長;

(3)BP=m,PC=n時,求AM的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了綠化環(huán)境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.

1)植樹3株的人數(shù)為   ;

2)該班同學植樹株數(shù)的中位數(shù)是   ;

3)求該班同學平均植樹的株數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).

請你根據(jù)圖中所給的信息解答下列問題:

(1)請將以上兩幅統(tǒng)計圖補充完整;

(2)若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有______人達標;

(3)若該校學生有1000人,請你估計此次測試中,全校達標的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD是邊長為1的正方形,其中,,的圓心依次是點A,B,C.

(1)求點D沿三條圓弧運動到點G所經(jīng)過的路線長;

(2)判斷直線GB與DF的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對一張矩形紙片ABCD進行折疊,具體操作如下:

第一步:先對折,使ADBC重合,得到折痕MN,展開;

第二步:再一次折疊,使點A落在MN上的點A′處,并使折痕經(jīng)過點B,得到折痕BE,同時,得到線段BA′,EA′,展開,如圖1;

第三步:再沿EA′所在的直線折疊,點B落在AD上的點B′處,得到折痕EF,同時得到線段B′F,展開,如圖2.

求證:(1)∠ABE=30°;

(2)四邊形BFB′E為菱形.

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為m,到墻邊OA的距離分別為m,m.

(1)求該拋物線的函數(shù)關系式,并求圖案最高點到地面的距離;

(2)若該墻的長度為10 m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?

查看答案和解析>>

同步練習冊答案